ترغب بنشر مسار تعليمي؟ اضغط هنا

Database Management System (DBMS) plays a core role in modern software from mobile apps to online banking. It is critical that DBMS should provide correct data to all applications. When the DBMS returns incorrect data, a correctness bug is triggered. Current production-level DBMSs still suffer from insufficient testing due to the limited hand-written test cases. Recently several works proposed to automatically generate many test cases with query transformation, a process of generating an equivalent query pair and testing a DBMS by checking whether the system returns the same result set for both queries. However, all of them still heavily rely on manual work to provide a transformation which largely confines their exploration of the valid input query space. This paper introduces duplicate-sensitivity guided transformation synthesis which automatically finds new transformations by first synthesizing many candidates then filtering the nonequivalent ones. Our automated synthesis is achieved by mutating a query while keeping its duplicate sensitivity, which is a necessary condition for query equivalence. After candidate synthesis, we keep the mutant query which is equivalent to the given one by using a query equivalent checker. Furthermore, we have implemented our idea in a tool Eqsql and used it to test the production-level DBMSs. In two months, we detected in total 30 newly confirmed and unique bugs in MySQL, TiDB and CynosDB.
With an increasing number of value-flow properties to check, existing static program analysis still tends to have scalability issues when high precision is required. We observe that the key design flaw behind the scalability problem is that the core static analysis engine is oblivious of the mutual synergies among different properties being checked and, thus, inevitably loses many optimization opportunities. Our approach is inter-property-aware and able to capture possible overlaps and inconsistencies among different properties. Thus, before analyzing a program, we can make optimization plans which decide how to reuse the specific analysis results of a property to speed up checking other properties. Such a synergistic interaction among the properties significantly improves the analysis performance. We have evaluated our approach by checking twenty value-flow properties in standard benchmark programs and ten real-world software systems. The results demonstrate that our approach is more than 8x faster than existing ones but consumes only 1/7 memory. Such a substantial improvement in analysis efficiency is not achieved by sacrificing the effectiveness: at the time of writing, 39 bugs found by our approach have been fixed by developers and four of them have been assigned CVE IDs due to their security impact.
Automated program repair (APR) has attracted great research attention, and various techniques have been proposed. Search-based APR is one of the most important categories among these techniques. Existing researches focus on the design of effective mu tation operators and searching algorithms to better find the correct patch. Despite various efforts, the effectiveness of these techniques are still limited by the search space explosion problem. One of the key factors attribute to this problem is the quality of fault spaces as reported by existing studies. This motivates us to study the importance of the fault space to the success of finding a correct patch. Our empirical study aims to answer three questions. Does the fault space significantly correlate with the performance of search-based APR? If so, are there any indicative measurements to approximate the accuracy of the fault space before applying expensive APR techniques? Are there any automatic methods that can improve the accuracy of the fault space? We observe that the accuracy of the fault space affects the effectiveness and efficiency of search-based APR techniques, e.g., the failure rate of GenProg could be as high as $60%$ when the real fix location is ranked lower than 10 even though the correct patch is in the search space. Besides, GenProg is able to find more correct patches and with fewer trials when given a fault space with a higher accuracy. We also find that the negative mutation coverage, which is designed in this study to measure the capability of a test suite to kill the mutants created on the statements executed by failing tests, is the most indicative measurement to estimate the efficiency of search-based APR. Finally, we confirm that automated generated test cases can help improve the accuracy of fault spaces, and further improve the performance of search-based APR techniques.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا