ترغب بنشر مسار تعليمي؟ اضغط هنا

We describe a powerful and intuitive technique for modeling light-matter interactions in classical and quantum nanoplasmonics. Our approach uses a quasinormal mode expansion of the Green function within a metal nanoresonator of arbitrary shape, toget her with a Dyson equation, to derive an expression for the spontaneous decay rate and far field propagator from dipole oscillators outside resonators. For a single quasinormal mode, at field positions outside the quasi-static coupling regime, we give a closed form solution for the Purcell factor and generalized effective mode volume. We augment this with an analytic expression for the divergent LDOS very near the metal surface, which allows us to derive a simple and highly accurate expression for the electric field outside the metal resonator at distances from a few nanometers to infinity. This intuitive formalism provides an enormous simplification over full numerical calculations and fixes several pending problems in quasinormal mode theory.
We present a theoretical study of the resonance fluorescence spectra of an optically driven quantum dot placed near a single metal nanoparticle. The metallic reservoir coupling is calculated for an 8-nm metal nanoparticle using a time-convolutionless master equation approach where the exact photon reservoir function is included using Green function theory. By exciting the system coherently near the nanoparticle dipole mode, we show that the driven Mollow spectrum becomes highly asymmetric due to internal coupling effects with higher-order plasmons. We also highlight regimes of resonance squeezing and broadening as well as spectral reshaping through light propagation. Our master equation technique can be applied to any arbitrary material system, including lossy inhomogeneous structures, where mode expansion techniques are known to break down.
Charge-neutral excitons in semiconductor quantum dots have a small finite energy separation caused by the anisotropic exchange splitting. Coherent excitation of neutral excitons will generally excite both exciton components, unless the excitation is parallel to one of the dipole axes. We present a polaron master equation model to describe two-exciton pumping using a coherent continuous wave pump field in the presence of a realistic anisotropic exchange splitting. We predict a five-peak incoherent spectrum, thus generalizing the Mollow triplet to become a Mollow quintuplet. We experimentally confirm such spectral quintuplets for In(Ga)As quantum dots and obtain very good agreement with theory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا