ترغب بنشر مسار تعليمي؟ اضغط هنا

The missing baryons are usually thought to reside in galaxy filaments as warm-hot intergalactic medium (WHIM). From previous studies, giant radio galaxies are usually associated with galaxy groups, which normally trace the WHIM. We propose observatio ns with the powerful SKA1 to make a census of giant radio galaxies in the southern hemisphere, which will probe the ambient WHIM. The radio galaxies discovered will also be investigated to search for dying radio sources. With the highly improved sensitivity and resolution of SKA1, more than 6,000 giant radio sources will be discovered within 250 hours.
A method of calculating induced electric field is presented in this paper. Induced electric field in solar atmosphere is derived by the time variation of magnetic field when the charged particle accumulation is neglected. In order to get the spatial distribution of magnetic field, several extrapolation methods are introduced. With observational data from Helioseismic and Magnetic Imager (HMI) aboard the NASAs Solar Dynamics Observatory (SDO) on May 20th, 2010, we extrapolate the magnetic field to the upper atmosphere from the photosphere. By calculating the time variation of magnetic field, we can get the induced electric field. The derived induced electric field can reach a value of 100 V/cm and the average electric field has a maximum point at the layer of 360 km above the photosphere. The Monte Carlo statistics method is used to compute the triple integration of induced electric field.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا