ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the first results from a survey for 1665, 1667, and 1720 MHz OH emission over a small region of the Outer Galaxy centered at $l approx 105.0deg , b approx +1.0deg$ . This sparse, high-sensitivity survey ($Delta Ta approx Delta Tmb approx 3. 0 - 3.5$ mK rms in 0.55 km/s channels), was carried out as a pilot project with the Green Bank Telescope (GBT, FWHM $approx 7.6$) on a 3 X 9 grid at $0.5deg$ spacing. The pointings chosen correspond with those of the existing $^{12}$CO(1-0) CfA survey of the Galaxy (FWHM $approx 8.4$). With 2-hr integrations, 1667 MHz OH emission was detected with the GBT at $gtrsim 21$ of the 27 survey positions ($geq 78%$ ), confirming the ubiquity of molecular gas in the ISM as traced by this spectral line. With few exceptions, the main OH lines at 1665 and 1667 MHz appear in the ratio of 5:9 characteristic of LTE at our sensitivity levels. No OH absorption features are recorded in the area of the present survey, in agreement with the low levels of continuum background emission in this direction. At each pointing the OH emission appears in several components extending over a range of radial velocity and coinciding with well-known features of Galactic structure such as the Local Arm and the Perseus Arm. In contrast, little CO emission is seen in the survey area; less than half of the $gtrsim 50$ identified OH components show detectable CO at the CfA sensitivity levels, and these are generally faint. There are no CO profiles without OH emission. With few exceptions, peaks in the OH profiles coincide with peaks in the GBT HI spectra (obtained concurrently, FWHM $8.9$), although the converse is not true. We conclude that main-line OH emission is a promising tracer for the dark molecular gas in the Galaxy discovered earlier in Far-IR and gamma-ray emission. Further work is needed to establish the quantitative details of this connection.
We have mapped faint 1667 OH line emission (TA approx 20 - 40 mK in our approx 30 beam) along many lines of sight in the Galaxy covering an area of approx 4circ times 4circ in the general direction of l approx 108circ, b approx 5circ. The OH emission is widespread, similar in extent to the local HI (r </= 2 kpc) both in space and in velocity. The OH profile amplitudes show a good general correlation with those of HI in spectral channels of approx 1 km/s; this relation is described by TA(OH) approx 1.50 times 10^{-4} TB(HI) for values of TB(HI) </approx 60 - 70 K. Beyond this the HI line appears to saturate, and few values are recorded above approx 90 K. However, the OH brightness continues to rise, by a further factor approx 3. The OH velocity profiles show multiple features with widths typically 2 - 3 km/s, but less than 10% of these features are associated with CO(1-0) emission in existing surveys of the area smoothed to comparable resolution.
Astronomers usually need the highest angular resolution possible, but the blurring effect of diffraction imposes a fundamental limit on the image quality from any single telescope. Interferometry allows light collected at widely-separated telescopes to be combined in order to synthesize an aperture much larger than an individual telescope thereby improving angular resolution by orders of magnitude. Radio and millimeter wave astronomers depend on interferometry to achieve image quality on par with conventional visible and infrared telescopes. Interferometers at visible and infrared wavelengths extend angular resolution below the milli-arcsecond level to open up unique research areas in imaging stellar surfaces and circumstellar environments. In this chapter the basic principles of interferometry are reviewed with an emphasis on the common features for radio and optical observing. While many techniques are common to interferometers of all wavelengths, crucial differences are identified that will help new practitioners avoid unnecessary confusion and common pitfalls. Concepts essential for writing observing proposals and for planning observations are described, depending on the science wavelength, angular resolution, and field of view required. Atmospheric and ionospheric turbulence degrades the longest-baseline observations by significantly reducing the stability of interference fringes. Such instabilities represent a persistent challenge, and the basic techniques of phase-referencing and phase closure have been developed to deal with them. Synthesis imaging with large observing datasets has become a routine and straightforward process at radio observatories, but remains challenging for optical facilities. In this context the commonly-used image reconstruction algorithms CLEAN and MEM are presented. Lastly, a concise overview of current facilities is included as an appendix.
We consider the application of interferometry to measuring the sizes and shapes of small bodies in the solar system that cannot be spatially resolved by todays single-dish telescopes. Assuming ellipsoidal shapes, our results indicate that interferome ters can measure the size of an object to better than 15% uncertainty if the limb-darkening is unknown. Assuming a Minnaert scattering model, one can theoretically derive the limb-darkening parameters from simultaneous measurements of visibilities at several different projected baseline lengths to improve the size and shape determination to an accuracy of a few percent. With a 3-D shape model for the dwarf planet Haumea, we demonstrate that when photometric light curve, visibility light curve, and visibility phase center displacement are combined, the rotational period and sense of rotation can all be derived, and the rotational pole can be estimated. Because of its elongated shape and the dark red spot, the rotation of Haumea causes its optical photocenter to move in a loop on the sky, extending of ~80 muas without the dark red spot, and ~200 muas with it. Such movements are easily detectable by space-based astrometric interferometer designed e.g. for planet detection. As an example, we consider the possible contributions to the study of small bodies in the solar system by the Space Interferometry Mission. We show that such a mission could make substantial contributions in characterizing the fundamental physical properties of the brightest Kuiper Belt Objects and Centaurs as well as a large number of main belt asteroids. We compile a list of Kuiper Belt Objects and Centaurs that are potentially scientifically interesting and observable by such missions.
Using observed GALEX far-ultraviolet (FUV) fluxes and VLA images of the 21-cm HI column densities, along with estimates of the local dust abundances, we measure the volume densities of a sample of actively star-forming giant molecular clouds (GMCs) i n the nearby spiral galaxy M83 on a typical resolution scale of 170 pc. Our approach is based on an equilibrium model for the cycle of molecular hydrogen formation on dust grains and photodissociation under the influence of the FUV radiation on the cloud surfaces of GMCs. We find a range of total volume densities on the surface of GMCs in M83, namely 0.1 - 400 cm-3 inside R25, 0.5 - 50 cm-3 outside R25 . Our data include a number of GMCs in the HI ring surrounding this galaxy. Finally, we discuss the effects of observational selection, which may bias our results.
In a previous paper we described a method of estimating the single-measurement bias to be expected in astrometric observations of targets in crowded fields with the future Space Interferometry Mission (SIM). That study was based on a simplified model of the instrument and the measurement process involving a single-pixel focal plane detector, an idealized spectrometer, and continuous sampling of the fringes during the delay scanning. In this paper we elaborate on this ``instrument model to include the following additional complications: spectral dispersion of the light with a thin prism, which turns the instrument camera into an objective prism spectrograph; a multiple-pixel detector in the camera focal plane; and, binning of the fringe signal during scanning of the delay. The results obtained with this improved model differ in small but systematic ways from those obtained with the earlier simplified model. We conclude that it is the pixellation of the dispersed fringes on the focal plane detector which is responsible for the differences. The improved instrument model described here suggests additional ways of reducing certain kinds of confusion, and provides a better basis for the evaluation of instrumental effects in the future.
HI features near young star clusters in M81 are identified as the photodissociated surfaces of Giant Molecular Clouds (GMCs) from which the young stars have recently formed. The HI column densities of these features show a weak trend, from undetectab le values inside R = 3.7 kpc and increasing rapidly to values around 3 x 10^21 cm^-2 near R ~ 7.5 kpc. This trend is similar to that of the radially-averaged HI distribution in this galaxy, and implies a constant area covering factor of ~ 0.21 for GMCs throughout M81. The incident UV fluxes G0 of our sample of candidate PDRs decrease radially. A simple equilibrium model of the photodissociation-reformation process connects the observed values of the incident UV flux, the HI column density, and the relative dust content, permitting an independent estimate to be made of the total gas density in the GMC. Within the GMC this gas will be predominantly molecular hydrogen. Volume densities of 1 < n < 200 cm^-3 are derived, with a geometric mean of 17 cm^-3. These values are similar to the densities of GMCs in the Galaxy, but somewhat lower than those found earlier for M101 with similar methods. Low values of molecular density in the GMCs of M81 will result in low levels of collisional excitation of the CO(1-0) transition, and are consistent with the very low surface brightness of CO(1-0) emission observed in the disk of M81.
22 - Ronald J. Allen 2007
The accuracy requirements on station-keeping for constellations of free-flying collectors coupled as (future) imaging arrays in space for astrophysics applications are examined. The basic imaging element of these arrays is the two-element interferome ter. Accurate knowledge of two quantities is required: the textit{projected baseline length}, which is the distance between the two interferometer elements projected on the plane tranverse to the line of sight to the target; and the textit{optical path difference}, which is the difference in the distances from that transverse plane to the beam combiner. ``Rules-of-thumb are determined for the typical accuracy required on these parameters. The requirement on the projected baseline length is a textit{knowledge} requirement and depends on the angular size of the targets of interest; it is generally at a level of half a meter for typical stellar targets, decreasing to perhaps a few centimeters only for the widest attainable fields of view. The requirement on the optical path difference is a textit{control} requirement and is much tighter, depending on the bandwidth of the signal; it is at a level of half a wavelength for narrow (few %) signal bands, decreasing to $approx 0.2 lambda$ for the broadest bandwidths expected to be useful. Translation of these requirements into engineering requirements on station-keeping accuracy depends on the specific details of the collector constellation geometry. Several examples are provided to guide future application of the criteria presented here. Some implications for the design of such collector constellations and for the methods used to transform the information acquired into images are discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا