ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, we identify a radically new viewpoint on the collective behaviour of groups of intelligent agents. We first develop a highly general abstract model for the possible future lives that these agents may encounter as a result of their deci sions. In the context of these possible futures, we show that the causal entropic principle, whereby agents follow behavioural rules that maximise their entropy over all paths through the future, predicts many of the observed features of social interactions between individuals in both human and animal groups. Our results indicate that agents are often able to maximise their future path entropy by remaining cohesive as a group, and that this cohesion leads to collectively intelligent outcomes that depend strongly on the distribution of the number of future paths that are possible. We derive social interaction rules that are consistent with maximum-entropy group behaviour for both discrete and continuous decision spaces. Our analysis further predicts that social interactions are likely to be fundamentally based on Webers law of response to proportional stimuli, supporting many studies that find a neurological basis for this stimulus-response mechanism, and providing a novel basis for the common assumption of linearly additive social forces in simulation studies of collective behaviour.
78 - Roman Garnett 2012
We consider two active binary-classification problems with atypical objectives. In the first, active search, our goal is to actively uncover as many members of a given class as possible. In the second, active surveying, our goal is to actively query points to ultimately predict the proportion of a given class. Numerous real-world problems can be framed in these terms, and in either case typical model-based concerns such as generalization error are only of secondary importance. We approach these problems via Bayesian decision theory; after choosing natural utility functions, we derive the optimal policies. We provide three contributions. In addition to introducing the active surveying problem, we extend previous work on active search in two ways. First, we prove a novel theoretical result, that less-myopic approximations to the optimal policy can outperform more-myopic approximations by any arbitrary degree. We then derive bounds that for certain models allow us to reduce (in practice dramatically) the exponential search space required by a naive implementation of the optimal policy, enabling further lookahead while still ensuring that optimal decisions are always made.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا