ترغب بنشر مسار تعليمي؟ اضغط هنا

We report first principles calculations of the structural, electronic, elastic and vibrational properties of the semiconducting orthorhombic ZnSb compound. We study also the intrinsic point defects in order to eventually improve the thermoelectric pr operties of this already very promising thermoelectric material. Concerning the electronic properties, in addition to the band structure, we show that the Zn (Sb) crystallographically equivalent atoms are not exactly equivalent from the electronic point of view. Lattice dynamics, elastic and thermodynamic properties are found to be in good agreement with experiments and they confirm the non equivalency of the zinc and antimony atoms from the vibrational point of view. The calculated elastic properties show a relatively weak anisotropy and the hardest direction is the y direction. We observe the presence of low energy modes involving both Zn and Sb atoms at about 5-6 meV, similarly to what has been found in Zn4Sb3 and we suggest that the interactions of these modes with acoustic phonons could explain the relatively low thermal conductivity of ZnSb. Zinc vacancies are the most stable defects and this explains the intrinsic p-type conductivity of ZnSb.
We present a study of the thermodynamic and physical properties of Tl5Te3, BiTl9Te6 and SbTl9Te6 compounds by means of density functional theory based calculations. The optimized lattice constants of the compounds are in good agreement with the exper imental data. The electronic density of states and band structures are calculated to understand the bonding mechanism in the three compounds. The indirect band gap of BiTl9Te6 and SbTl9Te6 compounds are found to be equal to 0.256 eV and 0.374 eV, respectively. The spin-orbit coupling has important effects on the electronic structure of the two semiconducting compounds and should therefore be included for a good numerical description of these materials. The elastic constants of the three compounds have been calculated, and the bulk modulus, shear modulus, and youngs modulus have been determined. The change from ductile to brittle behavior after Sb or Bi alloying is related to the change of the electronic properties. Finally, the Debye temperature, longitudinal, transverse and average sound velocities have been obtained.
We present a study of the electronic properties of Tl5Te3, BiTl9Te6 and SbTl9Te6 compounds by means of density functional theory based calculations. The optimized lattice constants of the compounds are in good agreement with the experimental data. Th e band gap of BiTl9Te6 and SbTl9Te6 compounds are found to be equal to 0.589 eV and 0.538 eV, respectively and are in agreement with the available experimental data. To compare the thermoelectric properties of the different compounds we calculate their thermopower using Motts law and show, as expected experimentally, that the substituted tellurides have much better thermoelectric properties compared to the pure compound.
We report a detailed study of specific heat, electrical resistivity and thermal expansion in combination with inelastic neutron and inelastic X-ray scattering to investigate the origin of superconductivity in the two silicon clathrate superconductors Ba8Si46 and Ba24Si100. Both compounds have a similar structure based on encaged barium atoms in oversized silicon cages. However, the transition temperatures are rather different: 8 K and 1.5 K respectively. By extracting the superconducting properties, phonon density of states, electron-phonon coupling function and phonon anharmonicity from these measurements we discuss the important factors governing Tc and explain the difference between the two compounds.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا