ترغب بنشر مسار تعليمي؟ اضغط هنا

A sunspot emanates from a growing pore or protospot. In order to trigger the formation of a penumbra, large inclinations at the outskirts of the protospot are necessary. The penumbra develops and establishes by colonising both umbral areas and granul ation. Evidence for a unique stable boundary value for the vertical component of the magnetic field strength, $B^{rm stable}_{rm ver}$, was found along the umbra-penumbra boundary of developed sunspots. We use broadband G-band images and spectropolarimetric GFPI/VTT data to study the evolution of and the vertical component of the magnetic field on a forming umbra-penumbra boundary. For comparison with stable sunspots, we also analyse the two maps observed by Hinode/SP on the same spot after the penumbra formed. The vertical component of the magnetic field, $B_{rm ver}$, at the umbra-penumbra boundary increases during penumbra formation owing to the incursion of the penumbra into umbral areas. After 2.5 hours, the penumbra reaches a stable state as shown by the GFPI data. At this stable stage, the simultaneous Hinode/SP observations show a $B_{rm ver}$ value comparable to that of umbra-penumbra boundaries of fully fledged sunspots. We confirm that the umbra-penumbra boundary, traditionally defined by an intensity threshold, is also characterised by a distinct canonical magnetic property, namely by $B^{rm stable}_{rm ver}$. During the penumbra formation process, the inner penumbra extends into regions where the umbra previously prevailed. Hence, in areas where $B_{rm ver} < B^{rm stable}_{rm ver}$, the magneto-convection mode operating in the umbra turns into a penumbral mode. Eventually, the inner penumbra boundary settles at $B^{rm stable}_{rm ver}$, which hints toward the role of $B_{rm ver}^{rm stable}$ as inhibitor of the penumbral mode of magneto-convection.
The generation of magnetic flux in the solar interior and its transport to the outer solar atmosphere will be in the focus of solar physics research for the next decades. One key-ingredient is the process of magnetic flux emergence into the solar pho tosphere, and the reorganization to form the magnetic phenomena of active regions like sunspots and pores. On July 4, 2009, we observed a region of emerging magnetic flux, in which a proto-spot without penumbra forms a penumbra within some 4.5 hours. This process is documented by multi-wavelength observations at the German VTT: (a) imaging, (b) data with high resolution and temporal cadence acquired in Fe I 617.3 nm with the 2D imaging spectropolarimter GFPI, and (c) scans with the slit based spectropolarimeter TIP in Fe I 1089.6 nm. MDI contiuum maps and magnetograms are used to follow the formation of the proto-spot, and the subsequent evolution of the entire active region. During the formation of the penumbra, the area and the magnetic flux of the spot increases. The additional magnetic flux is supplied by the adjacent region of emerging magnetic flux: As emerging bipole separate, the poles of the spot polarity migrate towards the spot, and finally merge with it. As more and more flux is accumulated, a penumbra forms. From
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا