ترغب بنشر مسار تعليمي؟ اضغط هنا

171 - Daniel Hug , Rolf Schneider 2021
In stochastic geometry there are several instances of threshold phenomena in high dimensions: the behavior of a limit of some expectation changes abruptly when some parameter passes through a critical value. This note continues the investigation of t he expected face numbers of polyhedral random cones, when the dimension of the ambient space increases to infinity. In the focus are the critical values of the observed threshold phenomena, as well as threshold phenomena for differences instead of quotients.
191 - Daniel Hug , Rolf Schneider 2020
We consider an even probability distribution on the $d$-dimensional Euclidean space with the property that it assigns measure zero to any hyperplane through the origin. Given $N$ independent random vectors with this distribution, under the condition that they do not positively span the whole space, the positive hull of these vectors is a random polyhedral cone (and its intersection with the unit sphere is a random spherical polytope). It was first studied by Cover and Efron. We consider the expected face numbers of these random cones and describe a threshold phenomenon when the dimension $d$ and the number $N$ of random vectors tend to infinity. In a similar way, we treat the solid angle, and more generally the Grassmann angles. We further consider the expected numbers of $k$-faces and of Grassmann angles of index $d-k$ when also $k$ tends to infinity.
Croftons formula of integral geometry evaluates the total motion invariant measure of the set of $k$-dimensional planes having nonempty intersection with a given convex body. This note deals with motion invariant measures on sets of pairs of hyperpla nes or lines meeting a convex body. Particularly simple results are obtained if, and only if, the given body is of constant width in the first case, and of constant brightness in the second case.
Let $X$ be the mosaic generated by a stationary Poisson hyperplane process $hat X$ in ${mathbb R}^d$. Under some mild conditions on the spherical directional distribution of $hat X$ (which are satisfied, for example, if the process is isotropic), we show that with probability one the set of cells ($d$-polytopes) of $X$ has the following properties. The translates of the cells are dense in the space of convex bodies. Every combinatorial type of simple $d$-polytopes is realized infinitely often by the cells of $X$. A further result concerns the distribution of the typical cell.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا