ترغب بنشر مسار تعليمي؟ اضغط هنا

A basic question in learning theory is to identify if two distributions are identical when we have access only to examples sampled from the distributions. This basic task is considered, for example, in the context of Generative Adversarial Networks ( GANs), where a discriminator is trained to distinguish between a real-life distribution and a synthetic distribution. % Classically, we use a hypothesis class $H$ and claim that the two distributions are distinct if for some $hin H$ the expected value on the two distributions is (significantly) different. Our starting point is the following fundamental problem: is having the hypothesis dependent on more than a single random example beneficial. To address this challenge we define $k$-ary based discriminators, which have a family of Boolean $k$-ary functions $mathcal{G}$. Each function $gin mathcal{G}$ naturally defines a hyper-graph, indicating whether a given hyper-edge exists. A function $gin mathcal{G}$ distinguishes between two distributions, if the expected value of $g$, on a $k$-tuple of i.i.d examples, on the two distributions is (significantly) different. We study the expressiveness of families of $k$-ary functions, compared to the classical hypothesis class $H$, which is $k=1$. We show a separation in expressiveness of $k+1$-ary versus $k$-ary functions. This demonstrate the great benefit of having $kgeq 2$ as distinguishers. For $kgeq 2$ we introduce a notion similar to the VC-dimension, and show that it controls the sample complexity. We proceed and provide upper and lower bounds as a function of our extended notion of VC-dimension.
We study the expressive power of kernel methods and the algorithmic feasibility of multiple kernel learning for a special rich class of kernels. Specifically, we define emph{Euclidean kernels}, a diverse class that includes most, if not all, famili es of kernels studied in literature such as polynomial kernels and radial basis functions. We then describe the geometric and spectral structure of this family of kernels over the hypercube (and to some extent for any compact domain). Our structural results allow us to prove meaningful limitations on the expressive power of the class as well as derive several efficient algorithms for learning kernels over different domains.
We study the sample complexity of private synthetic data generation over an unbounded sized class of statistical queries, and show that any class that is privately proper PAC learnable admits a private synthetic data generator (perhaps non-efficient) . Previous work on synthetic data generators focused on the case that the query class $mathcal{D}$ is finite and obtained sample complexity bounds that scale logarithmically with the size $|mathcal{D}|$. Here we construct a private synthetic data generator whose sample complexity is independent of the domain size, and we replace finiteness with the assumption that $mathcal{D}$ is privately PAC learnable (a formally weaker task, hence we obtain equivalence between the two tasks).
We consider classification and regression tasks where we have missing data and assume that the (clean) data resides in a low rank subspace. Finding a hidden subspace is known to be computationally hard. Nevertheless, using a non-proper formulation we give an efficient agnostic algorithm that classifies as good as the best linear classifier coupled with the best low-dimensional subspace in which the data resides. A direct implication is that our algorithm can linearly (and non-linearly through kernels) classify provably as well as the best classifier that has access to the full data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا