ترغب بنشر مسار تعليمي؟ اضغط هنا

We introduce a notion of embedding codimension of an arbitrary local ring, establish some general properties, and study in detail the case of arc spaces of schemes of finite type over a field. Viewing the embedding codimension as a measure of singula rities, our main result can be interpreted as saying that the singularities of the arc space are maximal at the arcs that are fully embedded in the singular locus of the underlying scheme, and progressively improve as we move away from said locus. As an application, we complement a theorem of Drinfeld, Grinberg, and Kazhdan on formal neighborhoods in arc spaces by providing a converse to their theorem, an optimal bound for the embedding codimension of the formal model appearing in the statement, a precise formula for the embedding dimension of the model constructed in Drinfelds proof, and a geometric meaningful way of realizing the decomposition stated in the theorem.
Given an arbitrary projective birational morphism of varieties, we provide a natural and explicit way of constructing relative compactifications of the maps induced on the main components of the jet schemes. In the case the morphism is the Nash blow- up of a variety, such relative compactifications are shown to be given by the Nash blow-ups of the main components of the jet schemes.
The paper provides a description of the sheaves of Kahler differentials of the arc space and jet schemes of an arbitrary scheme where these sheaves are computed directly from the sheaf of differentials of the given scheme. Several applications on the structure of arc spaces are presented.
We study the arc space of the Grassmannian from the point of view of the singularities of Schubert varieties. Our main tool is a decomposition of the arc space of the Grassmannian that resembles the Schubert cell decomposition of the Grassmannian its elf. Just as the combinatorics of Schubert cells is controlled by partitions, the combinatorics in the arc space is controlled by plane partitions (sometimes also called 3d partitions). A combination of a geometric analysis of the pieces in the decomposition and a combinatorial analysis of plane partitions leads to invariants of the singularities. As an application we reduce the computation of log canonical thresholds of pairs involving Schubert varieties to an easy linear programming problem. We also study the Nash problem for Schubert varieties, showing that the Nash map is always bijective in this case.
Let X be an algebraic variety of characteristic zero. Terminal valuations are defined in the sense of the minimal model program, as those valuations given by the exceptional divisors on a minimal model over X. We prove that every terminal valuation o ver X is in the image of the Nash map, and thus it corresponds to a maximal family of arcs through the singular locus of X. In dimension two, this result gives a new proof of the theorem of Fernandez de Bobadilla and Pe Pereira stating that, for surfaces, the Nash map is a bijection.
We show that the reduction to positive characteristic of the multiplier ideal in the sense of de Fernex and Hacon agrees with the test ideal for infinitely many primes, assuming that the variety is numerically Q-Gorenstein. It follows, in particular, that this reduction property holds in dimension 2 for all normal surfaces.
Inspired by several works on jet schemes and motivic integration, we consider an extension to singular varieties of the classical definition of discrepancy for morphisms of smooth varieties. The resulting invariant, which we call Jacobian discrepancy , is closely related to the jet schemes and the Nash blow-up of the variety. This notion leads to a framework in which adjunction and inversion of adjunction hold in full generality, and several consequences are drawn from these properties. The main result of the paper is a formula measuring the gap between the dualizing sheaf and the Grauert-Riemenschneider canonical sheaf of a normal variety. As an application, we give characterizations for rational and Du Bois singularities on normal Cohen-Macaulay varieties in terms of Jacobian discrepancies. In the case when the canonical class of the variety is Q-Cartier, our result provides the necessary corrections for the converses to hold in theorems of Elkik, of Kovacs, Schwede and Smith, and of Kollar and Kovacs on rational and Du Bois singularities.
64 - Roi Docampo 2010
We study arc spaces and jet schemes of generic determinantal varieties. Using the natural group action, we decompose the arc spaces into orbits, and analyze their structure. This allows us to compute the number of irreducible components of jet scheme s, log canonical thresholds, and topological zeta functions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا