ترغب بنشر مسار تعليمي؟ اضغط هنا

We predict a variety of composite quiescent and spinning two- and three-dimensional (2D and 3D) self-trapped modes in media with a repulsive nonlinearity whose local strength grows from center to periphery. These are 2D dipoles and quadrupoles, and 3 D octupoles, as well as vortex-antivortex pairs and quadruplets. Unlike other multidimensional models, where such complex bound states either do not exist or are subject to strong instabilities, these modes are remarkably robust in the present setting. The results are obtained by means of numerical methods and analytically, using the Thomas-Fermi approximation. The predicted states may be realized in optical and matter-wave media with controllable cubic nonlinearities.
102 - Rodislav Driben , 2011
Families of analytical solutions are found for symmetric and antisymmetric solitons in the dual-core system with the Kerr nonlinearity and PT-balanced gain and loss. The crucial issue is stability of the solitons. A stability region is obtained in an analytical form, and verified by simulations, for the PT-symmetric solitons. For the antisymmetric ones, the stability border is found in a numerical form. Moving solitons of both types collide elastically. The two soliton species merge into one in the supersymmetric case, with equal coefficients of the gain, loss and inter-core coupling. These solitons feature a subexponential instability, which may be suppressed by periodic switching (management).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا