ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient frequency conversion techniques are crucial to the development of plasmonic metasurfaces for information processing and signal modulation. In principle, nanoscale electric-field confinement in nonlinear materials enables higher harmonic con version efficiencies per unit volume than those attainable in bulk materials. Here we demonstrate efficient second-harmonic generation (SHG) in a serrated nanogap plasmonic geometry that generates steep electric field gradients on a dielectric metasurface. An ultrafast pump is used to control plasmon-induced electric fields in a thin-film material with inversion symmetry that, without plasmonic enhancement, does not exhibit an an even-order nonlinear optical response. The temporal evolution of the plasmonic near-field is characterized with ~100as resolution using a novel nonlinear interferometric technique. The ability to manipulate nonlinear signals in a metamaterial geometry as demonstrated here is indispensable both to understanding the ultrafast nonlinear response of nanoscale materials, and to producing active, optically reconfigurable plasmonic devices
The enhanced electric field at plasmonic resonances in nanoscale antennas can lead to efficient harmonic generation, especially when the plasmonic geometry is asymmetric on either inter-particle or intra-particle levels. The planar Archimedean nanosp iral offers a unique geometrical asymmetry for second-harmonic generation (SHG) because the SHG results neither from arranging centrosymmetric nanoparticles in asymmetric groupings, nor from non-centrosymmetric nanoparticles that retain a local axis of symmetry. Here we report forward SHG from planar arrays of Archimedean nanospirals using 15 fs pulse from a Ti:sapphire oscillator tuned to 800 nm wavelength. The measured harmonic-generation efficiencies are 2.6*10-9, 8*10-9 and 1.3*10-8 for left-handed circular, linear, and right-handed circular polarizations, respectively. The uncoated nanospirals are stable under average power loading of as much as 300 uW per nanoparticle. The nanospirals also exhibit a selective conversion between polarization states. These experiments show that the intrinsic asymmetry of the nanospirals results in a highly efficient, two-dimensional harmonic generator that can be incorporated into metasurface optics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا