ترغب بنشر مسار تعليمي؟ اضغط هنا

Yield stress fluids (YSFs) display a dual nature highlighted by the existence of a yield stress such that YSFs are solid below the yield stress, whereas they flow like liquids above it. Under an applied shear rate $dotgamma$, the solid-to-liquid tran sition is associated with a complex spatiotemporal scenario. Still, the general phenomenology reported in the literature boils down to a simple sequence that can be divided into a short-time response characterized by the so-called stress overshoot, followed by stress relaxation towards a steady state. Such relaxation can be either long-lasting, which usually involves the growth of a shear band that can be only transient or that may persist at steady-state, or abrupt, in which case the solid-to-liquid transition resembles the failure of a brittle material, involving avalanches. Here we use a continuum model based on a spatially-resolved fluidity approach to rationalize the complete scenario associated with the shear-induced yielding of YSFs. Our model provides a scaling for the coordinates of the stress maximum as a function of $dotgamma$, which shows excellent agreement with experimental and numerical data extracted from the literature. Moreover, our approach shows that such a scaling is intimately linked to the growth dynamics of a fluidized boundary layer in the vicinity of the moving boundary. Yet, such scaling is independent of the fate of that layer, and of the long-term behavior of the YSF. Finally, when including the presence of long-range correlations, we show that our model displays a ductile to brittle transition, i.e., the stress overshoot reduces into a sharp stress drop associated with avalanches, which impacts the scaling of the stress maximum with $dotgamma$. Our work offers a unified picture of shear-induced yielding in YSFs, whose complex spatiotemporal dynamics are deeply connected to non-local effects.
Soft glassy materials such as mayonnaise, wet clays, or dense microgels display under external shear a solid-to-liquid transition. Such a shear-induced transition is often associated with a non-monotonic stress response, in the form of a stress maxim um referred to as stress overshoot. This ubiquitous phenomenon is characterized by the coordinates of the maximum in terms of stress $sigma_text{M}$ and strain $gamma_text{M}$ that both increase as weak power laws of the applied shear rate. Here we rationalize such power-law scalings using a continuum model that predicts two different regimes in the limit of low and high applied shear rates. The corresponding exponents are directly linked to the steady-state rheology and are both associated with the nucleation and growth dynamics of a fluidized region. Our work offers a consistent framework for predicting the transient response of soft glassy materials upon start-up of shear from the local flow behavior to the global rheological observables.
We present mesoscale numerical simulations of Rayleigh-Benard (RB) convection in a two-dimensional model emulsion. The systems under study are constituted of finite-size droplets, whose concentration Phi_0 is systematically varied from small (Newtoni an emulsions) to large values (non-Newtonian emulsions). We focus on the characterisation of the heat transfer properties close to the transition from conductive to convective states, where it is known that a homogeneous Newtonian system exhibits a steady flow and a time-independent heat flux. In marked contrast, emulsions exhibit a non-steady dynamics with fluctuations in the heat flux. In this paper, we aim at the characterisation of such non-steady dynamics via detailed studies on the time-averaged heat flux and its fluctuations. To understand the time-averaged heat flux, we propose a side-by-side comparison between the emulsion system and a single-phase (SP) system, whose viscosity is constructed from the shear rheology of the emulsion. We show that such local closure works well only when a suitable degree of coarse-graining (at the droplet scale) is introduced in the local viscosity. To delve deeper into the fluctuations in the heat flux, we propose a side-by-side comparison between a Newtonian emulsion and a non-Newtonian emulsion, at fixed time-averaged heat flux. This comparison elucidates that finite-size droplets and the non-Newtonian rheology cooperate to trigger enhanced heat-flux fluctuations at the droplet scales. These enhanced fluctuations are rooted in the emergence of space correlations among distant droplets, which we highlight via direct measurements of the droplets displacement and the characterisation of the associated correlation function. The observed findings offer insights on heat transfer properties for confined systems possessing finite-size constituents.
We numerically study the Rayleigh-Benard (RB) convection in two-dimensional model emulsions confined between two parallel walls at fixed temperatures. The systems under study are heterogeneous, with finite-size droplets dispersed in a continuous phas e. The droplet concentration is chosen to explore the convective heat transfer of both Newtonian (low droplet concentration) and non-Newtonian (high droplet concentration) emulsions, the latter exhibiting shear-thinning rheology, with a noticeable increase of viscosity at low shear rates. It is well known that the transition to convection of a homogeneous Newtonian system is accompanied by the onset of steady flow and time-independent heat flux; in marked contrast, the heterogeneity of emulsions brings in an additional and previously unexplored phenomenology. As a matter of fact, when the droplet concentration increases, we observe that the heat transfer process is mediated by a non-steady flow, with neat heat-flux fluctuations, obeying a non-Gaussian statistics. The observed findings are ascribed to the emergence of space correlations among distant droplets, which we highlight via direct measurements of the droplets displacement and the characterisation of the associated correlation functions.
We present mesoscale numerical simulations of Rayleigh-B{e}nard convection in a two-dimensional concentrated emulsion, confined between two parallel walls, heated from below and cooled from above, under the effect of buoyancy forces. The systems unde r study comprise finite-size droplets, whose concentration $Phi_0$ is varied, ranging from the dilute limit up to the point where the emulsion starts to be packed and exhibits non-Newtonian rheology. We focus on the characterisation of the convective heat transfer properties close to the transition from conductive to convective states. The convective flow is confined and heterogeneous, which causes the emulsion to exhibit concentration heterogeneities in space $phi_0(y)$, depending on the location in the wall-to-wall direction ($y$). With the aim of assessing quantitatively the heat transfer efficiency of such heterogeneous systems, we resort to a side-by-side comparison between the concentrated emulsion system and a single-phase (SP) system, whose local viscosity $eta^{mbox{SP}}(y)$ is suitably constructed from the shear rheology of the emulsion. Such comparison highlights that a suitable degree $Lambda$ of coarse-graining needs to be introduced in the local viscosity $eta_{Lambda}^{mbox{SP}}(y)$, in order for the single-phase system to attain the same heat transfer efficiency of the emulsion. Specifically, it is shown that a quantitative matching between the two systems is possible whenever the coarse-graining is performed over a scale of the order of the droplet size.
Dense emulsions, colloidal gels, microgels, and foams all display a solid-like behavior at rest characterized by a yield stress, above which the material flows like a liquid. Such a fluidization transition often consists of long-lasting transient flo ws that involve shear-banded velocity profiles. The characteristic time for full fluidization, $tau_text{f}$, has been reported to decay as a power-law of the shear rate $dot gamma$ and of the shear stress $sigma$ with respective exponents $alpha$ and $beta$. Strikingly, the ratio of these exponents was empirically observed to coincide with the exponent of the Herschel-Bulkley law that describes the steady-state flow behavior of these complex fluids. Here we introduce a continuum model, based on the minimization of a free energy, that captures quantitatively all the salient features associated with such textit{transient} shear-banding. More generally, our results provide a unified theoretical framework for describing the yielding transition and the steady-state flow properties of yield stress fluids.
Marine species reproduce and compete while being advected by turbulent flows. It is largely unknown, both theoretically and experimentally, how population dynamics and genetics are changed by the presence of fluid flows. Discrete agent-based simulati ons in continuous space allow for accurate treatment of advection and number fluctuations, but can be computationally expensive for even modest organism densities. In this report, we propose an algorithm to overcome some of these challenges. We first provide a thorough validation of the algorithm in one and two dimensions without flow. Next, we focus on the case of weakly compressible flows in two dimensions. This models organisms such as phytoplankton living at a specific depth in the three-dimensional, incompressible ocean experiencing upwelling and/or downwelling events. We show that organisms born at sources in a two-dimensional time-independent flow experience an increase in fixation probability.
In the recent years the lattice Boltzmann (LB) methodology has been fruitfully extended to include the effects of thermal fluctuations. So far, all studied cases pertain equilibrium fluctuations, i.e. fluctuations with respect to an equilibrium backg round state. In this paper we take a step further and present results of fluctuating LB simulations of a binary mixture confined between two parallel walls in presence of a constant concentration gradient in the wall-to-wall direction. This is a paradigmatic set-up for the study of non-equilibrium (NE) fluctuations, i.e. fluctuations with respect to a non- equilibrium state. We analyze the dependence of the structure factors for the hydrodynamical fields on the wave vector $boldsymbol{q}$ in both the directions parallel and perpendicular to the walls, as well as the finite-size effects induced by confinement, highlighting the long-range ($sim |boldsymbol{q}|^{-4}$) nature of correlations in the NE framework. Results quantitatively agree with the predictions of fluctuating hydrodynamics. Moreover, in presence of a non-ideal (NI) equation of state of the mixture, we also observe that the (spatially homogeneous) average pressure changes, due to a genuinely new contribution triggered by the long-range nature of NE fluctuations. These NE pressure effects are studied at changing the system size and the concentration gradient. Taken all together, we argue that these findings are instrumental to boost the applicability of the fluctuating LB methodology in the framework of NE fluctuations, possibly in conjunction with experiments.
We study the solid-to-liquid transition in a two-dimensional fully periodic soft-glassy model with an imposed spatially heterogeneous stress. The model we consider consists of droplets of a dispersed phase jammed together in a continuous phase. When the peak value of the stress gets close to the yield stress of the material, we find that the whole system intermittently tunnels to a metastable fluidized state, which relaxes back to a metastable solid state by means of an elastic-wave dissipation. This macroscopic scenario is studied through the microscopic displacement field of the droplets, whose time statistics displays a remarkable bimodality. Metastability is rooted in the existence, in a given stress range, of two distinct stable rheological branches as well as long-range correlations (e.g., large dynamic heterogeneity) developed in the system. Finally, we show that a similar behavior holds for a pressure-driven flow, thus suggesting possible experimental tests.
We discuss the effect of stochastic resonance in a simple model of magnetic reversals. The model exhibits statistically stationary solutions and bimodal distribution of the large scale magnetic field. We observe a non trivial amplification of stochas tic resonance induced by turbulent fluctuations, i.e. the amplitude of the external periodic perturbation needed for stochastic resonance to occur is much smaller than the one estimated by the equilibrium probability distribution of the unperturbed system. We argue that similar amplifications can be observed in many physical systems where turbulent fluctuations are needed to maintain large scale equilibria.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا