ترغب بنشر مسار تعليمي؟ اضغط هنا

We present 645 optical spectra of 73 supernovae (SNe) of Types IIb, Ib, Ic, and broad-lined Ic. All of these types are attributed to the core collapse of massive stars, with varying degrees of intact H and He envelopes before explosion. The SNe in ou r sample have a mean redshift <cz> = 4200 km/s. Most of these spectra were gathered at the Harvard-Smithsonian Center for Astrophysics (CfA) between 2004 and 2009. For 53 SNe, these are the first published spectra. The data coverage range from mere identification (1-3 spectra) for a few SNe to extensive series of observations (10-30 spectra) that trace the spectral evolution for others, with an average of 9 spectra per SN. For 44 SNe of the 73 SNe presented here, we have well-determined dates of maximum light to determine the phase of each spectrum. Our sample constitutes the most extensive spectral library of stripped-envelope SNe to date. We provide very early coverage (as early as 30 days before V-band max) for photospheric spectra, as well as late-time nebular coverage when the innermost regions of the SNe are visible (as late as 2 years after explosion, while for SN1993J, we have data as late as 11.6 years). This data set has homogeneous observations and reductions that allow us to study the spectroscopic diversity of these classes of stripped SNe and to compare these to SNe associated with gamma-ray bursts. We undertake these matters in follow-up papers.
We report spectroscopic and photometric observations of the Type IIb SN 2011dh obtained between 4 and 34 days after the estimated date of explosion (May 31.5 UT). The data cover a wide wavelength range from 2,000 Angstroms in the UV to 2.4 microns in the NIR. Optical spectra provide line profiles and velocity measurements of HI, HeI, CaII and FeII that trace the composition and kinematics of the SN. NIR spectra show that helium is present in the atmosphere as early as 11 days after the explosion. A UV spectrum obtained with the STIS reveals that the UV flux for SN 2011dh is low compared to other SN IIb. The HI and HeI velocities in SN 2011dh are separated by about 4,000 km/s at all phases. We estimate that the H-shell of SN 2011dh is about 8 times less massive than the shell of SN 1993J and about 3 times more massive than the shell of SN 2008ax. Light curves (LC) for twelve passbands are presented. The maximum bolometric luminosity of $1.8 pm 0.2 times 10^{42}$ erg s$^{-1}$ occurred about 22 days after the explosion. NIR emission provides more than 30% of the total bolometric flux at the beginning of our observations and increases to nearly 50% of the total by day 34. The UV produces 16% of the total flux on day 4, 5% on day 9 and 1% on day 34. We compare the bolometric light curves of SN 2011dh, SN 2008ax and SN 1993J. The LC are very different for the first twelve days after the explosions but all three SN IIb display similar peak luminosities, times of peak, decline rates and colors after maximum. This suggests that the progenitors of these SN IIb may have had similar compositions and masses but they exploded inside hydrogen shells that that have a wide range of masses. The detailed observations presented here will help evaluate theoretical models for this supernova and lead to a better understanding of SN IIb.
We present multi-band optical photometry of 94 spectroscopically-confirmed Type Ia supernovae (SN Ia) in the redshift range 0.0055 to 0.073, obtained between 2006 and 2011. There are a total of 5522 light curve points. We show that our natural system SN photometry has a precision of roughly 0.03 mag or better in BVri, 0.06 mag in u, and 0.07 mag in U for points brighter than 17.5 mag and estimate that it has a systematic uncertainty of 0.014, 0.010, 0.012, 0.014, 0.046, and 0.073 mag in BVriuU, respectively. Comparisons of our standard system photometry with published SN Ia light curves and comparison stars reveal mean agreement across samples in the range of ~0.00-0.03 mag. We discuss the recent measurements of our telescope-plus-detector throughput by direct monochromatic illumination by Cramer et al (in prep.). This technique measures the whole optical path through the telescope, auxiliary optics, filters, and detector under the same conditions used to make SN measurements. Extremely well-characterized natural-system passbands (both in wavelength and over time) are crucial for the next generation of SN Ia photometry to reach the 0.01 mag accuracy level. The current sample of low-z SN Ia is now sufficiently large to remove most of the statistical sampling error from the dark energy error budget. But pursuing the dark-energy systematic errors by determining highly-accurate detector passbands, combining optical and near-infrared (NIR) photometry and spectra, using the nearby sample to illuminate the population properties of SN Ia, and measuring the local departures from the Hubble flow will benefit from larger, carefully measured nearby samples.
We have used images and spectra of the Sloan Digital Sky Survey to examine the host galaxies of 519 nearby supernovae. The colors at the sites of the explosions, as well as chemical abundances, and specific star formation rates of the host galaxies p rovide circumstantial evidence on the origin of each supernova type. We examine separately SN II, SN IIn, SN IIb, SN Ib, SN Ic, and SN Ic with broad lines (SN Ic-BL). For host galaxies that have multiple spectroscopic fibers, we select the fiber with host radial offset most similar to that of the SN. Type Ic SN explode at small host offsets, and their hosts have exceptionally strongly star-forming, metal-rich, and dusty stellar populations near their centers. The SN Ic-BL and SN IIb explode in exceptionally blue locations, and, in our sample, we find that the host spectra for SN Ic-BL show lower average oxygen abundances than those for SN Ic. SN IIb host fiber spectra are also more metal-poor than those for SN Ib, although a significant difference exists for only one of two strong-line diagnostics. SN Ic-BL host galaxy emission lines show strong central specific star formation rates. In contrast, we find no strong evidence for different environments for SN IIn compared to the sites of SN II. Because our supernova sample is constructed from a variety of sources, there is always a risk that sampling methods can produce misleading results. We have separated the supernovae discovered by targeted surveys from those discovered by galaxy-impartial searches to examine these questions and show that our results do not depend sensitively on the discovery technique.
We present multicolor Hubble Space Telescope (HST) WFPC2 broadband observations of the Type Ic SN 1994I obtained approximately 280 days after maximum light. We measure the brightness of the SN and, relying on the detailed spectroscopic database of SN 1994I, we transform the ground-based photometry obtained at early times to the HST photometric system, deriving light curves for the WFPC2 F439W, F555W, F675W, and F814W passbands that extend from 7 days before to 280 days after maximum. We use the multicolor photometry to build a quasi-bolometric light curve of SN 1994I, and compare it with similarly constructed light curves of other supernovae. In doing so, we propose and test a scaling in energy and time that allows for a more meaningful comparison of the exponential tails of different events. Through comparison with models, we find that the late-time light curve of SN 1994I is consistent with that of spherically symmetric ejecta in homologous expansion, for which the ability to trap the Gamma-rays produced by the radioactive decay of 56Co diminishes roughly as the inverse of time squared. We also find that by the time of the HST photometry, the light curve was significantly energized by the annihilation of positrons.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا