ترغب بنشر مسار تعليمي؟ اضغط هنا

Monolithic integration of control technologies for atomic systems is a promising route to the development of quantum computers and portable quantum sensors. Trapped atomic ions form the basis of high-fidelity quantum information processors and high-a ccuracy optical clocks. However, current implementations rely on free-space optics for ion control, which limits their portability and scalability. Here we demonstrate a surface-electrode ion-trap chip using integrated waveguides and grating couplers, which delivers all the wavelengths of light required for ionization, cooling, coherent operations, and quantum-state preparation and detection of Sr+ qubits. Laser light from violet to infrared is coupled onto the chip via an optical-fiber array, creating an inherently stable optical path, which we use to demonstrate qubit coherence that is resilient to platform vibrations. This demonstration of CMOS-compatible integrated-photonic surface-trap fabrication, robust packaging, and enhanced qubit coherence is a key advance in the development of portable trapped-ion quantum sensors and clocks, providing a way toward the complete, individual control of larger numbers of ions in quantum information processing systems.
Understanding the effects of spin-orbit coupling (SOC) and many-body interactions on spin transport is important in condensed matter physics and spintronics. This topic has been intensively studied for spin carriers such as electrons but barely explo red for charge-neutral bosonic quasiparticles (including their condensates), which hold promises for coherent spin transport over macroscopic distances. Here, we explore the effects of synthetic SOC (induced by optical Raman coupling) and atomic interactions on the spin transport in an atomic Bose-Einstein condensate (BEC), where the spin-dipole mode (SDM, actuated by quenching the Raman coupling) of two interacting spin components constitutes an alternating spin current. We experimentally observe that SOC significantly enhances the SDM damping while reducing the thermalization (the reduction of the condensate fraction). We also observe generation of BEC collective excitations such as shape oscillations. Our theory reveals that the SOC-modified interference, immiscibility, and interaction between the spin components can play crucial roles in spin transport.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا