ترغب بنشر مسار تعليمي؟ اضغط هنا

The Gemini Planet Imager (GPI) is a new facility instrument for the Gemini Observatory designed to provide direct detection and characterization of planets and debris disks around stars in the solar neighborhood. In addition to its extreme adaptive o ptics and corona graphic systems which give access to high angular resolution and high-contrast imaging capabilities, GPI contains an integral field spectrograph providing low resolution spectroscopy across five bands between 0.95 and 2.5 $mu$m. This paper describes the sequence of processing steps required for the spectro-photometric calibration of GPI science data, and the necessary calibration files. Based on calibration observations of the white dwarf HD 8049B we estimate that the systematic error in spectra extracted from GPI observations is less than 5%. The flux ratio of the occulted star and fiducial satellite spots within coronagraphic GPI observations, required to estimate the magnitude difference between a target and any resolved companions, was measured in the $H$-band to be $Delta m = 9.23pm0.06$ in laboratory measurements and $Delta m = 9.39pm 0.11$ using on-sky observations. Laboratory measurements for the $Y$, $J$, $K1$ and $K2$ filters are also presented. The total throughput of GPI, Gemini South and the atmosphere of the Earth was also measured in each photometric passband, with a typical throughput in $H$-band of 18% in the non-coronagraphic mode, with some variation observed over the six-month period for which observations were available. We also report ongoing development and improvement of the data cube extraction algorithm.
As a part of our ongoing Volume-limited A-Star (VAST) adaptive optics survey, we have obtained observations of 26 binary systems with projected separations <100 AU, 13 of which have sufficient historical measurements to allow for refinement of their orbital elements. For each system with an estimated orbit, the dynamical system mass obtained was compared with the system mass estimated from mass-magnitude relations. Discrepancies between the dynamical and theoretical system mass can be explained by the presence of a previously unresolved spectroscopic component, or by a non-solar metallicity of the system. Using this approach to infer the presence of additional companions, a lower limit to the fraction of binaries, triples, and quadruples can be estimated as 39, 46, and 15 per cent, for systems with at least one companion within 100 AU. The fraction of multiple systems with three or more components shows a relative increase compared to the fraction for Solar-type primaries resolved in previous volume-limited surveys. The observations have also revealed a pair of potentially young ($<$100 Myr) M-dwarf companions, which would make an ideal benchmark for the theoretical models during the pre-Main Sequence contraction phase for M-dwarfs. In addition to those systems with orbit fits, we report 13 systems for which further orbital monitoring observations are required, 11 of which are newly resolved as a part of the VAST survey.
With an adaptive optics imaging survey of 148 B6-A7 stars, we have tested the hypothesis that unresolved lower-mass companions are the source of the unexpected X-ray detections of stars in this spectral type range. The sample is composed of 63 stars detected in X-rays within the ROSAT All-Sky Survey and 85 stars that form a control sample; both subsets have the same restricted distribution of spectral type, age, X-ray sensitivity and separation coverage. A total of 68 companion candidates are resolved with separations ranging from 0.3 to 26.2, with 23 new detections. The multiple star frequency of the X-ray sample based on companions resolved within the ROSAT error ellipse is found to be 43 (+6,-6)%. The corresponding control sample multiple star frequency is three times lower at 12 (+4,-3)% -- a difference of 31pm7%. These results are presented in the first of a series of papers based on our Volume-limited A-Star (VAST) survey -- a comprehensive study of the multiplicity of A-type stars.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا