ترغب بنشر مسار تعليمي؟ اضغط هنا

We study cosmological perturbation theory within the framework of unimodular gravity. We show that the Lagrangian constraint on the determinant of the metric required by unimodular gravity leads to an extra constraint on the gauge freedom of the metr ic perturbations. Although the main equation of motion for the gravitational potential remains the same, the shift variable, which is gauge artifact in General Relativity, cannot be set to zero in unimodular gravity. This non-vanishing shift variable affects the propagation of photons throughout the cosmological evolution and therefore modifies the Sachs-Wolfe relation between the relativistic gravitational potential and the microwave temperature anisotropies. However, for adiabatic fluctuations the difference between the result in General Relativity and unimodular gravity is suppressed on large angular scales. Thus, no strong constraints on the theory can be derived.
We study linear cosmological perturbations in the ``healthy extension of Horava-Lifshitz gravity which has recently been analyzed cite{BPS2}. We find that there are two degrees of freedom for scalar metric fluctuations, but that one of them decouples in the infrared limit. Also, for appropriate choices of the parameters defining the Lagrangian, the extra mode can be made well-behaved even in the ultraviolet.
We study the spectrum of cosmological fluctuations in the D3/D7 brane inflationary universe with particular attention to the parametric excitation of entropy modes during the reheating stage. The same tachyonic instability which renders reheating in this model very rapid leads to an exponential growth of entropy fluctuations during the preheating stage which in turn may induce a large contribution to the large-scale curvature fluctuations. We take into account the effects of long wavelength quantum fluctuations in the matter fields. As part of this work, we perform an analytical analysis of the reheating process. We find that the initial stage of preheating proceeds by the tachyonic instability channel. An upper bound on the time it takes for the energy initially stored in the inflaton field to convert into fluctuations is obtained by neglecting the local fluctuations produced during the period of tachyonic decay and analyzing the decay of the residual homogeneous field oscillations, which proceeds by parametric resonance. We show that in spite of the fact that the resonance is of narrow-band type, it is sufficiently efficient to rapidly convert most of the energy of the background fields into matter fluctuations.
We consider the non-commutative inflation model of [3] in which it is the unconventional dispersion relation for regular radiation which drives the accelerated expansion of space. In this model, we study the evolution of linear cosmological perturbat ions through the transition between the phase of accelerated expansion and the regular radiation-dominated phase of Standard Cosmology, the transition which is analogous to the reheating period in scalar field-driven models of inflation. If matter consists of only a single non-commutative radiation fluid, then the curvature perturbations are constant on super-Hubble scales. On the other hand, if we include additional matter fields which oscillate during the transition period, e.g. scalar moduli fields, then there can be parametric amplification of the amplitude of the curvature perturbations. We demonstrate this explicitly by numerically solving the full system of perturbation equations in the case where matter consists of both the non-commutative radiation field and a light scalar field which undergoes oscillations. Our model is an example where the parametric resonance of the curvature fluctuations is driven by the oscillations not of the inflaton field, but of the entropy mode
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا