ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanophotonic (nanoplasmonic) structures confine, guide, and concentrate light on the nanoscale. Advancement of nanophotonics critically depends on active nanoscale control of these phenomena. Localized control of the insulator and metallic phases of vanadium dioxide (VO2) would open up a universe of applications in nanophotonics via modulation of the local dielectric environment of nanophotonic structures allowing them to function as active devices. Here we show dynamic reversible control of VO2 insulator-to-metal transition (IMT) locally on the scale of 15 nm or less and control of nanoantennas, observed in the near-field for the first time. Using polarization-selective near-field imaging techniques, we monitor simultaneously the IMT in VO2 and the change of plasmons on gold infrared nanoantennas. Structured nanodomains of the metallic VO2 locally and reversibly transform infrared plasmonic dipolar antennas to monopole antennas. Fundamentally, the IMT in VO2 can be triggered on femtosecond timescale to allow ultrafast nanoscale control of optical phenomena. These unique capabilities open up exciting novel applications in active nanophotonics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا