ترغب بنشر مسار تعليمي؟ اضغط هنا

We present timing solutions and spin properties of the young pulsar PSR B0540-69 from analysis of 15.8 yr of data from the Rossi X-Ray Timing Explorer. We perform a partially phase-coherent timing analysis in order to mitigate the pronounced effects of timing noise in this pulsar. We also perform fully coherent timing over large subsets of the data set in order to arrive at a more precise solution. In addition to the previously reported first glitch undergone by this pulsar, we find a second glitch, which occurred at MJD 52927 $pm$ 4, with fractional changes in spin frequency $Delta u/ u = (1.64 pm 0.05) times 10^{-9}$ and spin-down rate $Deltadot{ u}/dot{ u} = (0.930 pm 0.011) times 10^{-4}$ (taken from our fully coherent analysis). We measure a braking index that is consistent over the entire data span, with a mean value $n = 2.129 pm 0.012$, from our partially coherent timing analysis. We also investigated the emission behavior of this pulsar, and have found no evidence for significant flux changes, flares, burst-type activity, or pulse profile shape variations. While there is strong evidence for the much-touted similarity of PSR B0540-69 to the Crab pulsar, they nevertheless differ in several aspects, including glitch activity, where PSR B0540-69 can be said to resemble certain other very young pulsars. It seems clear that the specific processes governing the formation, evolution, and interiors of this population of recently born neutron stars can vary significantly, as reflected in their observed properties.
The pulsar PSR J1756$-$2251 resides in a relativistic double neutron star (DNS) binary system with a 7.67-hr orbit. We have conducted long-term precision timing on more than 9 years of data acquired from five telescopes, measuring five post-Keplerian parameters. This has led to several independent tests of general relativity (GR), the most constraining of which shows agreement with the prediction of GR at the 4% level. Our measurement of the orbital decay rate disagrees with that predicted by GR, likely due to systematic observational biases. We have derived the pulsar distance from parallax and orbital decay measurements to be 0.73$_{-0.24}^{+0.60}$ kpc (68%) and < 1.2 kpc (95% upper limit), respectively; these are significantly discrepant from the distance estimated using Galactic electron density models. We have found the pulsar mass to be 1.341$pm$0.007 M$_odot$, and a low neutron star (NS) companion mass of 1.230$pm$0.007 M$_odot$. We also determined an upper limit to the spin-orbit misalignment angle of 34{deg} (95%) based on a system geometry fit to long-term profile width measurements. These and other observed properties have led us to hypothesize an evolution involving a low mass loss, symmetric supernova progenitor to the second-formed NS companion, as is thought to be the case for the double pulsar system PSR J0737$-$3039A/B. This would make PSR J1756$-$2251 the second compact binary system providing concrete evidence for this type of NS formation channel.
The European Pulsar Timing Array (EPTA) is a multi-institutional, multi-telescope collaboration, with the goal of using high-precision pulsar timing to directly detect gravitational waves. In this article we discuss the EPTA member telescopes, curren t achieved timing precision, and near-future goals. We report a preliminary upper limit to the amplitude of a gravitational wave background. We also discuss the Large European Array for Pulsars, in which the five major European telescopes involved in pulsar timing will be combined to provide a coherent array that will give similar sensitivity to the Arecibo radio telescope, and larger sky coverage.
141 - Robert D. Ferdman 2010
PSR J1802-2124 is a 12.6-ms pulsar in a 16.8-hour binary orbit with a relatively massive white dwarf (WD) companion. These properties make it a member of the intermediate-mass class of binary pulsar (IMBP) systems. We have been timing this pulsar sin ce its discovery in 2002. Concentrated observations at the Green Bank Telescope, augmented with data from the Parkes and Nancay observatories, have allowed us to determine the general relativistic Shapiro delay. This has yielded pulsar and white dwarf mass measurements of 1.24(11) and 0.78(4) solar masses (68% confidence), respectively. The low mass of the pulsar, the high mass of the WD companion, the short orbital period, and the pulsar spin period may be explained by the system having gone through a common-envelope phase in its evolution. We argue that selection effects may contribute to the relatively small number of known IMBPs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا