ترغب بنشر مسار تعليمي؟ اضغط هنا

Compressed Sensing aims to capture attributes of a sparse signal using very few measurements. Cand`{e}s and Tao showed that sparse reconstruction is possible if the sensing matrix acts as a near isometry on all $boldsymbol{k}$-sparse signals. This pr operty holds with overwhelming probability if the entries of the matrix are generated by an iid Gaussian or Bernoulli process. There has been significant recent interest in an alternative signal processing framework; exploiting deterministic sensing matrices that with overwhelming probability act as a near isometry on $boldsymbol{k}$-sparse vectors with uniformly random support, a geometric condition that is called the Statistical Restricted Isometry Property or StRIP. This paper considers a family of deterministic sensing matrices satisfying the StRIP that are based on srm codes (binary chirps) and a $boldsymbol{k}$-sparse reconstruction algorithm with sublinear complexity. In the presence of stochastic noise in the data domain, this paper derives bounds on the $boldsymbol{ell_2}$ accuracy of approximation in terms of the $boldsymbol{ell_2}$ norm of the measurement noise and the accuracy of the best $boldsymbol{k}$-sparse approximation, also measured in the $boldsymbol{ell_2}$ norm. This type of $boldsymbol{ell_2 /ell_2}$ bound is tighter than the standard $boldsymbol{ell_2 /ell_1}$ or $boldsymbol{ell_1/ ell_1}$ bounds.
Fusion frame theory is an emerging mathematical theory that provides a natural framework for performing hierarchical data processing. A fusion frame is a frame-like collection of subspaces in a Hilbert space, thereby generalizing the concept of a fra me for signal representation. In this paper, we study the existence and construction of fusion frames. We first present a complete characterization of a special class of fusion frames, called Parseval fusion frames. The value of Parseval fusion frames is that the inverse fusion frame operator is equal to the identity and therefore signal reconstruction can be performed with minimal complexity. We then introduce two general methods -- the spatial complement and the Naimark complement -- for constructing a new fusion frame from a given fusion frame. We then establish existence conditions for fusion frames with desired properties. In particular, we address the following question: Given $M, N, m in NN$ and ${lambda_j}_{j=1}^M$, does there exist a fusion frame in $RR^M$ with $N$ subspaces of dimension $m$ for which ${lambda_j}_{j=1}^M$ are the eigenvalues of the associated fusion frame operator? We address this problem by providing an algorithm which computes such a fusion frame for almost any collection of parameters $M, N, m in NN$ and ${lambda_j}_{j=1}^M$. Moreover, we show how this procedure can be applied, if subspaces are to be added to a given fusion frame to force it to become Parseval.
The secrecy capacity of relay channels with orthogonal components is studied in the presence of an additional passive eavesdropper node. The relay and destination receive signals from the source on two orthogonal channels such that the destination al so receives transmissions from the relay on its channel. The eavesdropper can overhear either one or both of the orthogonal channels. Inner and outer bounds on the secrecy capacity are developed for both the discrete memoryless and the Gaussian channel models. For the discrete memoryless case, the secrecy capacity is shown to be achieved by a partial decode-and-forward (PDF) scheme when the eavesdropper can overhear only one of the two orthogonal channels. Two new outer bounds are presented for the Gaussian model using recent capacity results for a Gaussian multi-antenna point-to-point channel with a multi-antenna eavesdropper. The outer bounds are shown to be tight for two sub-classes of channels. The first sub-class is one in which the source and relay are clustered and the and the eavesdropper receives signals only on the channel from the source and the relay to the destination, for which the PDF strategy is optimal. The second is a sub-class in which the source does not transmit to the relay, for which a noise-forwarding strategy is optimal.
The standard approach to the design of individual space-time codes is based on optimizing diversity and coding gains. This geometric approach leads to remarkable examples, such as perfect space-time block codes, for which the complexity of Maximum Li kelihood (ML) decoding is considerable. Code diversity is an alternative and complementary approach where a small number of feedback bits are used to select from a family of space-time codes. Different codes lead to different induced channels at the receiver, where Channel State Information (CSI) is used to instruct the transmitter how to choose the code. This method of feedback provides gains associated with beamforming while minimizing the number of feedback bits. It complements the standard approach to code design by taking advantage of different (possibly equivalent) realizations of a particular code design. Feedback can be combined with sub-optimal low complexity decoding of the component codes to match ML decoding performance of any individual code in the family. It can also be combined with ML decoding of the component codes to improve performance beyond ML decoding performance of any individual code. One method of implementing code diversity is the use of feedback to adapt the phase of a transmitted signal as shown for 4 by 4 Quasi-Orthogonal Space-Time Block Code (QOSTBC) and multi-user detection using the Alamouti code. Code diversity implemented by selecting from equivalent variants is used to improve ML decoding performance of the Golden code. This paper introduces a family of full rate circulant codes which can be linearly decoded by fourier decomposition of circulant matrices within the code diversity framework. A 3 by 3 circulant code is shown to outperform the Alamouti code at the same transmission rate.
Results for Gaussian relay channels typically focus on maximizing transmission rates for given locations of the source, relay and destination. We introduce an alternative perspective, where the objective is maximizing coverage for a given rate. The n ew objective captures the problem of how to deploy relays to provide a given level of service to a particular geographic area, where the relay locations become a design parameter that can be optimized. We evaluate the decode and forward (DF) and compress and forward (CF) strategies for the relay channel with respect to the new objective of maximizing coverage. When the objective is maximizing rate, different locations of the destination favor different strategies. When the objective is coverage for a given rate, and the relay is able to decode, DF is uniformly superior in that it provides coverage at any point served by CF. When the channel model is modified to include random fading, we show that the monotone ordering of coverage regions is not always maintained. While the coverage provided by DF is sensitive to changes in the location of the relay and the path loss exponent, CF exhibits a more graceful degradation with respect to such changes. The techniques used to approximate coverage regions are new and may be of independent interest.
We consider estimating a random vector from its noisy projections onto low dimensional subspaces constituting a fusion frame. A fusion frame is a collection of subspaces, for which the sum of the projection operators onto the subspaces is bounded bel ow and above by constant multiples of the identity operator. We first determine the minimum mean-squared error (MSE) in linearly estimating the random vector of interest from its fusion frame projections, in the presence of white noise. We show that MSE assumes its minimum value when the fusion frame is tight. We then analyze the robustness of the constructed linear minimum MSE (LMMSE) estimator to erasures of the fusion frame subspaces. We prove that tight fusion frames consisting of equi-dimensional subspaces have maximum robustness (in the MSE sense) with respect to erasures of one subspace, and that the optimal subspace dimension depends on signal-to-noise ratio (SNR). We also prove that tight fusion frames consisting of equi-dimensional subspaces with equal pairwise chordal distances are most robust with respect to two and more subspace erasures. We call such fusion frames equi-distance tight fusion frames, and prove that the chordal distance between subspaces in such fusion frames meets the so-called simplex bound, and thereby establish connections between equi-distance tight fusion frames and optimal Grassmannian packings. Finally, we present several examples for construction of equi-distance tight fusion frames.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا