ترغب بنشر مسار تعليمي؟ اضغط هنا

The memory effect at null infinity, $mathcal{I}^+$, can be defined in terms of the permanent relative displacement of test particles (at leading order in $1/r$) resulting from the passage of a burst of gravitational radiation. In $D=4$ spacetime dime nsions, the memory effect can be characterized by the supertranslation relating the good cuts of $mathcal{I}^+$ in the stationary eras at early and late retarded times. It also can be characterized in terms of charges and fluxes associated with supertranslations. Black hole event horizons are in many ways analogous to $mathcal{I}^+$. We consider here analogous definitions of memory for a black hole, assuming that the black hole is approximately stationary at early and late advanced times, so that its event horizon is described by a Killing horizon (assumed nonextremal) at early and late times. We give prescriptions for defining preferred foliations of nonextremal Killing horizons. We give a definition of the memory tensor for a black hole in terms of the permanent relative displacement of the null geodesic generators of the event horizon between the early and late time stationary eras. We show that preferred foliations of the event horizon in the early and late time eras are related by a Chandrasekaran-Flanagan-Prabhu (CFP) supertranslation. However, we find that the memory tensor for a black hole horizon does not appear to be related to the CFP symmetries or their charges and fluxes in a manner similar to that occurring at $mathcal{I}^+$.
In classical General Relativity, the values of fields on spacetime are uniquely determined by their values at an initial time within the domain of dependence of this initial data surface. However, it may occur that the spacetime under consideration e xtends beyond this domain of dependence, and fields, therefore, are not entirely determined by their initial data. This occurs, for example, in the well-known (maximally) extended Reissner-Nordstrom or Reissner-Nordstrom-deSitter (RNdS) spacetimes. The boundary of the region determined by the initial data is called the Cauchy horizon. It is located inside the black hole in these spacetimes. The strong cosmic censorship conjecture asserts that the Cauchy horizon does not, in fact, exist in practice because the slightest perturbation (of the metric itself or the matter fields) will become singular there in a sufficiently catastrophic way that solutions cannot be extended beyond the Cauchy horizon. Thus, if strong cosmic censorship holds, the Cauchy horizon will be converted into a final singularity, and determinism will hold. Recently, however, it has been found that, classically this is not the case in RNdS spacetimes in a certain range of mass, charge, and cosmological constant. In this paper, we consider a quantum scalar field in RNdS spacetime and show that quantum theory comes to the rescue of strong cosmic censorship. We find that for any state that is nonsingular (i.e., Hadamard) within the domain of dependence, the expected stress-tensor blows up with affine parameter, $V$, along a radial null geodesic transverse to the Cauchy horizon as $T_{VV} sim C/V^2$ with $C$ independent of the state and $C eq 0$ generically in RNdS spacetimes. This divergence is stronger than in the classical theory and should be sufficient to convert the Cauchy horizon into a strong curvature singularity.
We consider the motion of charged and spinning bodies on the symmetry axis of a non-extremal Kerr-Newman black hole. If one treats the body as a test point particle of mass, $m$, charge $q$, and spin $S$, then by dropping the body into the black hole from sufficiently near the horizon, the first order area increase, $delta A$, of the black hole can be made arbitrarily small, i.e., the process can be done in a ``reversible manner. At second order, there may be effects on the energy delivered to the black hole---quadratic in $q$ and $S$---resulting from (i) the finite size of the body and (ii) self-force corrections to the energy. Sorce and Wald have calculated these effects for a charged, non-spinning body on the symmetry axis of an uncharged Kerr black hole. We consider the generalization of this process for a charged and spinning body on the symmetry axis of a Kerr-Newman black hole, where the self-force effects have not been calculated. A spinning body (with negligible extent along the spin axis) must have a mass quadrupole moment $gtrsim S^2/m$, so at quadratic order in the spin, we must take into account quadrupole effects on the motion. After taking into account all such finite size effects, we find that the condition $delta^2 A geq 0$ yields a nontrivial lower bound on the self-force energy, $E_{SF}$, at the horizon. In particular, for an uncharged, spinning body on the axis of a Kerr black hole of mass $M$, the net contribution of spin self-force to the energy of the body at the horizon is $E_{SF} geq S^2/8M^3$, corresponding to an overall repulsive spin self-force. A lower bound for the self-force energy, $E_{SF}$, for a body with both charge and spin at the horizon of a Kerr-Newman black hole is given. This lower bound will be the correct formula for $E_{SF}$ if the dropping process can be done reversibly to second order.
When a massive quantum body is put into a spatial superposition, it is of interest to consider the quantum aspects of the gravitational field sourced by the body. We argue that in order to understand how the body may become entangled with other massi ve bodies via gravitational interactions, it must be thought of as being entangled with its own Newtonian-like gravitational field. Thus, a Newtonian-like gravitational field must be capable of carrying quantum information. Our analysis supports the view that table-top experiments testing entanglement of systems interacting via gravity do probe the quantum nature of gravity, even if no ``gravitons are emitted during the experiment.
We analyse a gedankenexperiment previously considered by Mari et al. that involves quantum superpositions of charged and/or massive bodies (particles) under the control of the observers, Alice and Bob. In the electromagnetic case, we show that the qu antization of electromagnetic radiation (which causes decoherence of Alices particle) and vacuum fluctuations of the electromagnetic field (which limits Bobs ability to localize his particle to better than a charge-radius) both are essential for avoiding apparent paradoxes with causality and complementarity. We then analyze the gravitational version of this gedankenexperiment. We correct an error in the analysis of Mari et al. and of Baym and Ozawa, who did not properly account for the conservation of center of mass of an isolated system. We show that the analysis of the gravitational case is in complete parallel with the electromagnetic case provided that gravitational radiation is quantized and that vacuum fluctuations limit the localization of a particle to no better than a Planck length. This provides support for the view that (linearized) gravity should have a quantum field description.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا