ترغب بنشر مسار تعليمي؟ اضغط هنا

The Australia Telescope Large Area Survey (ATLAS) has surveyed seven square degrees of sky around the Chandra Deep Field South (CDFS) and the European Large Area ISO Survey - South 1 (ELAIS-S1) fields at 1.4 GHz. ATLAS aims to reach a uniform sensiti vity of $10 mu$Jy beam$^{-1}$ rms over the entire region with data release 1 currently reaching $sim30 mu$Jy beam$^{-1}$ rms. Here we present 466 new spectroscopic redshifts for radio sources in ATLAS as part of our optical follow-up program. Of the 466 radio sources with new spectroscopic redshifts, 142 have star-forming optical spectra, 282 show evidence for AGN in their optical spectra, 10 have stellar spectra and 32 have spectra revealing redshifts, but with insufficient features to classify. We compare our spectroscopic classifications with two mid-infrared diagnostics and find them to be in broad agreement. We also construct the radio luminosity function for star-forming galaxies to z $= 0.5$ and for AGN to z $= 0.8$. The radio luminosity function for star-forming galaxies appears to be in good agreement with previous studies. The radio luminosity function for AGN appears higher than previous studies of the local AGN radio luminosity function. We explore the possibility of evolution, cosmic variance and classification techniques affecting the AGN radio luminosity function. ATLAS is a pathfinder for the forthcoming EMU survey and the data presented in this paper will be used to guide EMUs survey design and early science papers.
56 - Ian Smail 2008
We have undertaken a pilot survey for faint QSOs in the UKIDSS Ultra Deep Survey Field using the KX selection technique. These observations exploit the very deep near-infrared and optical imaging of this field from UKIRT and Subaru to select candidat e QSOs based on their VJK colours and morphologies. We determined redshifts for 426 candidates using the AAOmega spectrograph on the AAT in service time. We identify 17 QSOs (M_B<= -23) in this pilot survey at z=1.57-3.29. We combine our sample with an X-ray selected sample of QSOs in the same field (a large fraction of which also comply with our KX selection) to constrain the surface density of QSOs with K<=20, deriving limits on the likely surface density of 85-150/deg^2. We use the good image quality available from our near-infrared imaging to detect a spatially extended component of the QSO light which probably represents the host galaxies. We also use our sample to investigate routes to improve the selection of KX QSOs at faint limits in the face of the significant contamination by compact, foreground galaxies. The brightest examples from our combined QSO sample will be used in conjunction with a large VLT VIMOS spectroscopic survey of high redshift galaxies in this region to study the structures inhabited by gas, galaxies and growing super-massive black holes at high redshifts in the UKIDSS UDS.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا