ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the distance measurement to z = 0.32 using the 11th data release of the Sloan Digital Sky Survey-III Baryon Acoustic Oscillation Survey (BOSS). We use 313,780 galaxies of the low-redshift (LOWZ) sample over 7,341 square-degrees to compute $D_V = (1264 pm 25)(r_d/r_{d,fid})$ - a sub 2% measurement - using the baryon acoustic feature measured in the galaxy two-point correlation function and power-spectrum. We compare our results to those obtained in DR10. We study observational systematics in the LOWZ sample and quantify potential effects due to photometric offsets between the northern and southern Galactic caps. We find the sample to be robust to all systematic effects found to impact on the targeting of higher-redshift BOSS galaxies, and that the observed north-south tensions can be explained by either limitations in photometric calibration or by sample variance, and have no impact on our final result. Our measurement, combined with the baryonic acoustic scale at z = 0.57, is used in Anderson et al. (2013a) to constrain cosmological parameters.
[Abridged] We study the spectral properties of intermediate mass galaxies as a function of colour and morphology. We use Galaxy Zoo to define three morphological classes of galaxies, namely early-types (ellipticals), late-type (disk-dominated) face-o n spirals and early-type (bulge-dominated) face-on spirals. We classify these galaxies as blue or red according to their SDSS g-r colour and use the spectral fitting code VESPA to calculate time-resolved star-formation histories, metallicity and total starlight dust extinction from their SDSS fibre spectra. We find that red late-type spirals show less star-formation in the last 500 Myr than blue late-type spirals by up to a factor of three, but share similar star-formation histories at earlier times. This decline in recent star-formation explains their redder colour: their chemical and dust content are the same. We postulate that red late-type spirals are recent descendants of blue late-type spirals, with their star-formation curtailed in the last 500 Myrs. The red late-type spirals are however still forming stars approximately 17 times faster than red ellipticals over the same period. Red early-type spirals lie between red late-type spirals and red ellipticals in terms of recent-to-intermediate star-formation and dust content. Therefore, it is plausible that these galaxies represent an evolutionary link between these two populations. They are more likely to evolve directly into red ellipticals than red late-type spirals. Blue ellipticals show similar star-formation histories as blue spirals (regardless of type), except they have formed less stars in the last 100 Myrs. However, blue ellipticals have different dust content, which peaks at lower extinction values than all spiral galaxies.
We explore the benefits of using a passively evolving population of galaxies to measure the evolution of the rate of structure growth between z=0.25 and z=0.65 by combining data from the SDSS-I/II and SDSS-III surveys. The large-scale linear bias of a population of dynamically passive galaxies, which we select from both surveys, is easily modeled. Knowing the bias evolution breaks degeneracies inherent to other methodologies, and decreases the uncertainty in measurements of the rate of structure growth and the normalization of the galaxy power-spectrum by up to a factor of two. If we translate our measurements into a constraint on sigma_8(z=0) assuming a concordance cosmological model and General Relativity (GR), we find that using a bias model improves our uncertainty by a factor of nearly 1.5. Our results are consistent with a flat Lambda Cold Dark Matter model and with GR.
We present a comprehensive study of 250,000 galaxies targeted by the Baryon Oscillation Spectroscopic Survey (BOSS) up to z ~ 0.7 with the specific goal of identifying and characterising a population of galaxies that has evolved without significant m erging. We compute a likelihood that each BOSS galaxy is a progenitor of the Luminous Red Galaxies (LRGs) sample, targeted by SDSS-I/II up z ~ 0.5, by using the fossil record of LRGs and their inferred star-formation histories, metallicity histories and dust content. We determine merger rates, luminosity growth rates and the evolution of the large-scale clustering between the two surveys, and we investigate the effect of using different stellar population synthesis models in our conclusions. We demonstrate that our sample is slowly evolving (of the order of 2 +/- 1.5% per Gyr by merging). Our conclusions refer to the bright and massive end of the galaxy population, with Mi0.55 < -22, and M* > 1E11.2 Msolar, corresponding roughly to 95% and 40% of the LRGs and BOSS galaxy populations, respectively. Our analysis further shows that any possible excess of flux in BOSS galaxies, when compared to LRGs, from potentially unresolved targets at z ~ 0.55 must be less than 1% in the r0.55-band (approximately equivalent to the g-band in the rest-frame of galaxies at z=0.55). When weighting the BOSS galaxies based on the predicted properties of the LRGs, and restricting the analysis to the reddest BOSS galaxies, we find an evolution of the large-scale clustering that is consistent with dynamical passive evolution, assuming a standard cosmology. We conclude that our likelihoods give a weighted sample that is as clean and as close to passive evolution (in dynamical terms, i.e. no or negligible merging) as possible, and that is optimal for cosmological studies.
We introduce a novel technique for empirically understanding galaxy evolution. We use empirically determined stellar evolution models to predict the past evolution of the Sloan Digital Sky Survey (SDSS-II) Luminous Red Galaxy (LRG) sample without any a-priori assumption about galaxy evolution. By carefully contrasting the evolution of the predicted and observed number and luminosity densities we test the passive evolution scenario for galaxies of different luminosity, and determine minimum merger rates. We find that the LRG population is not purely coeval, with some of galaxies targeted at z<0.23 and at z>0.34 showing different dynamical growth than galaxies targeted throughout the sample. Our results show that the LRG population is dynamically growing, and that this growth must be dominated by the faint end. For the most luminous galaxies, we find lower minimum merger rates than required by previous studies that assume passive stellar evolution, suggesting that some of the dynamical evolution measured previously was actually due to galaxies with non-passive stellar evolution being incorrectly modelled. Our methodology can be used to identify and match coeval populations of galaxies across cosmic times, over one or more surveys.
We present a series of colour evolution models for Luminous Red Galaxies (LRGs) in the 7th spectroscopic data release of the Sloan Digital Sky Survey (SDSS), computed using the full-spectrum fitting code VESPA on high signal-to-noise stacked spectra. The colour-evolution models are computed as a function of colour, luminosity and redshift, and we do not a-priori assume that LRGs constitute a uniform population of galaxies in terms of stellar evolution. By computing star-formation histories from the fossil record, the measured stellar evolution of the galaxies is decoupled from the surveys selection function, which also evolves with redshift. We present these evolutionary models computed using three different sets of Stellar Population Synthesis (SPS) codes. We show that the traditional fiducial model of purely passive stellar evolution of LRGs is broadly correct, but it is not sufficient to explain the full spectral signature. We also find that higher-order corrections to this model are dependent on the SPS used, particularly when calculating the amount of recent star formation. The amount of young stars can be non-negligible in some cases, and has important implications for the interpretation of the number density of LRGs within the selection box as a function of redshift. Dust extinction, however, is more robust to the SPS modelling: extinction increases with decreasing luminosity, increasing redshift, and increasing r-i colour. We are making the colour evolution tracks publicly available at http://www.icg.port.ac.uk/~tojeiror/lrg_evolution/.
We investigate radio-mode AGN activity among post-starburst galaxies from the Sloan Digital Sky Survey to determine whether AGN feedback may be responsible for the cessation of star formation. Based on radio morphology and radio-loudness from the FIR ST and NVSS data, we separate objects with radio activity due to an AGN from ongoing residual star formation. Of 513 SDSS galaxies with strong A-star spectra, 12 objects have 21-cm flux density above 1 mJy. These galaxies do not show optical AGN emission lines. Considering that the lifetime of radio emission is much shorter than the typical time-scale of the spectroscopic features of post-starburst galaxies, we conclude that the radio-emitting AGN activity in these objects was triggered after the end of the recent starburst, and thus cannot be an important feedback process to explain the post-starburst phase. The radio luminosities show a positive correlation with total galaxy stellar mass, but not with the mass of recently formed stars. Thus the mechanical power of AGN feedback derived from the radio luminosity is related to old stellar populations dominating the stellar mass, which in turn are related to the masses of central supermassive black holes.
We present a comprehensive study of the evolution of Luminous Red Galaxies (LRGs) in the latest and final spectroscopic data release of the Sloan Digital Sky Survey. We test the scenario of passive evolution of LRGs in 0.15<z<0.5, by looking at the e volution of the number and luminosity density of LRGs, as well as of their clustering. A new weighting scheme is introduced that allows us to keep a large number of galaxies in our sample and put stringent constraints on the growth and merging allowed by the data as a function of galaxy luminosity. Introducing additional luminosity-dependent weighting for our clustering analysis allows us to additionally constrain the nature of the mergers. We find that, in the redshift range probed, the population of LRGs grows in luminosity by 1.5-6 % Gyr^-1 depending on their luminosity. This growth is predominantly happening in objects that reside in the lowest-mass haloes probed by this study, and cannot be explained by satellite accretion into massive LRGs, nor by LRG-LRG merging. We find that the evolution of the brightest objects (with a K+e-corrected M_r,0.1 < -22.8) is consistent with that expected from passive evolution.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا