ترغب بنشر مسار تعليمي؟ اضغط هنا

Sampling is an established technique to scale graph neural networks to large graphs. Current approaches however assume the graphs to be homogeneous in terms of relations and ignore relation types, critically important in biomedical graphs. Multi-rela tional graphs contain various types of relations that usually come with variable frequency and have different importance for the problem at hand. We propose an approach to modeling the importance of relation types for neighborhood sampling in graph neural networks and show that we can learn the right balance: relation-type probabilities that reflect both frequency and importance. Our experiments on drug-drug interaction prediction show that state-of-the-art graph neural networks profit from relation-dependent sampling in terms of both accuracy and efficiency.
Time series prediction with neural networks has been the focus of much research in the past few decades. Given the recent deep learning revolution, there has been much attention in using deep learning models for time series prediction, and hence it i s important to evaluate their strengths and weaknesses. In this paper, we present an evaluation study that compares the performance of deep learning models for multi-step ahead time series prediction. The deep learning methods comprise simple recurrent neural networks, long short-term memory (LSTM) networks, bidirectional LSTM networks, encoder-decoder LSTM networks, and convolutional neural networks. We provide a further comparison with simple neural networks that use stochastic gradient descent and adaptive moment estimation (Adam) for training. We focus on univariate time series for multi-step-ahead prediction from benchmark time-series datasets and provide a further comparison of the results with related methods from the literature. The results show that the bidirectional and encoder-decoder LSTM network provides the best performance in accuracy for the given time series problems.
Air pollution has a wide range of implications on agriculture, economy, road accidents, and health. In this paper, we use novel deep learning methods for short-term (multi-step-ahead) air-quality prediction in selected parts of Delhi, India. Our deep learning methods comprise of long short-term memory (LSTM) network models which also include some rece
Quantum computation has been growing rapidly in both theory and experiments. In particular, quantum computing devices with a large number of qubits have been developed by IBM, Google, IonQ, and others. The current quantum computing devices are noisy intermediate-scale quantum $($NISQ$)$ devices, and so approaches to validate quantum processing on these quantum devices are needed. One of the most common ways of validation for an n-qubit quantum system is quantum tomography, which tries to reconstruct a quantum systems density matrix by a complete set of observables. However, the inherent noise in the quantum systems and the intrinsic limitations poses a critical challenge to precisely know the actual measurement operators which make quantum tomography impractical in experiments. Here, we propose an alternative approach to quantum tomography, based on the maximal information entropy, that can predict the values of unknown observables based on the available mean measurement data. This can then be used to reconstruct the density matrix with high fidelity even though the results for some observables are missing. Of additional contexts, a practical approach to the inference of the quantum mechanical state using only partial information is also needed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا