ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, we provide a thorough study on the expansion of single trace Einstein-Yang-Mills amplitudes into linear combination of color-ordered Yang-Mills amplitudes, from various different perspectives. Using the gauge invariance principle, we p ropose a recursive construction, where EYM amplitude with any number of gravitons could be expanded into EYM amplitudes with less number of gravitons. Through this construction, we can write down the complete expansion of EYM amplitude in the basis of color-ordered Yang-Mills amplitudes. As a byproduct, we are able to write down the polynomial form of BCJ numerator, i.e., numerators satisfying the color-kinematic duality, for Yang-Mills amplitude. After the discussion of gauge invariance, we move to the BCFW on-shell recursion relation and discuss how the expansion can be understood from the on-shell picture. Finally, we show how to interpret the expansion from the aspect of KLT relation and the way of evaluating the expansion coefficients efficiently.
For a physical field theory, the tree-level amplitudes should possess only single poles. However, when computing amplitudes with Cachazo-He-Yuan (CHY) formulation, individual terms in the intermediate steps will contribute higher-order poles. In this paper, we investigate the cancelation of higher-order poles in CHY formula with Pfaffian as the building block. We develop a diagrammatic rule for expanding the reduced Pfaffian. Then by organizing diagrams in appropriate groups and applying the cross-ratio identities, we show that all potential contributions to higher-order poles in the reduced Pfaffian are canceled out, i.e., only single poles survive in Yang-Mills theory and gravity. Furthermore, we show the cancelations of higher-order poles in other field theories by introducing appropriate truncations, based on the single pole structure of Pfaffian.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا