ترغب بنشر مسار تعليمي؟ اضغط هنا

The molecular motor myosin V exhibits a wide repertoire of pathways during the stepping process, which is intimately connected to its biological function. The best understood of these is hand-over-hand stepping by a swinging lever arm movement toward the plus-end of actin filaments, essential to its role as a cellular transporter. However, single-molecule experiments have also shown that the motor foot stomps, with one hand detaching and rebinding to the same site, and backsteps under sufficient load. Explaining the complete taxonomy of myosin Vs load-dependent stepping pathways, and the extent to which these are constrained by motor structure and mechanochemistry, are still open questions. Starting from a polymer model, we develop an analytical theory to understand the minimal physical properties that govern motor dynamics. In particular, we solve the first-passage problem of the head reaching the target binding site, investigating the competing effects of load pulling back at the motor, strain in the leading head that biases the diffusion in the direction of the target, and the possibility of preferential binding to the forward site due to the recovery stroke. The theory reproduces a variety of experimental data, including the power stroke and slow diffusive search regimes in the mean trajectory of the detached head, and the force dependence of the forward-to-backward step ratio, run length, and velocity. The analytical approach yields a formula for the stall force, identifying the relative contributions of the chemical cycle rates and mechanical features like the bending rigidities of the lever arms. Most importantly, by fully exploring the design space of the motor, we predict that myosin V is a robust motor whose dynamical behavior is not compromised by reasonable perturbations to the reaction cycle, and changes in the architecture of the lever arm.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا