ترغب بنشر مسار تعليمي؟ اضغط هنا

Federated learning can enable remote workers to collaboratively train a shared machine learning model while allowing training data to be kept locally. In the use case of wireless mobile devices, the communication overhead is a critical bottleneck due to limited power and bandwidth. Prior work has utilized various data compression tools such as quantization and sparsification to reduce the overhead. In this paper, we propose a predictive coding based communication scheme for federated learning. The scheme has shared prediction functions among all devices and allows each worker to transmit a compressed residual vector derived from the reference. In each communication round, we select the predictor and quantizer based on the rate-distortion cost, and further reduce the redundancy with entropy coding. Extensive simulations reveal that the communication cost can be reduced up to 99% with even better learning performance when compared with other baseline methods.
In federated learning (FL), reducing the communication overhead is one of the most critical challenges since the parameter server and the mobile devices share the training parameters over wireless links. With such consideration, we adopt the idea of SignSGD in which only the signs of the gradients are exchanged. Moreover, most of the existing works assume Channel State Information (CSI) available at both the mobile devices and the parameter server, and thus the mobile devices can adopt fixed transmission rates dictated by the channel capacity. In this work, only the parameter server side CSI is assumed, and channel capacity with outage is considered. In this case, an essential problem for the mobile devices is to select appropriate local processing and communication parameters (including the transmission rates) to achieve a desired balance between the overall learning performance and their energy consumption. Two optimization problems are formulated and solved, which optimize the learning performance given the energy consumption requirement, and vice versa. Furthermore, considering that the data may be distributed across the mobile devices in a highly uneven fashion in FL, a stochastic sign-based algorithm is proposed. Extensive simulations are performed to demonstrate the effectiveness of the proposed methods.
Federated learning (FL) has emerged as a prominent distributed learning paradigm. FL entails some pressing needs for developing novel parameter estimation approaches with theoretical guarantees of convergence, which are also communication efficient, differentially private and Byzantine resilient in the heterogeneous data distribution settings. Quantization-based SGD solvers have been widely adopted in FL and the recently proposed SIGNSGD with majority vote shows a promising direction. However, no existing methods enjoy all the aforementioned properties. In this paper, we propose an intuitively-simple yet theoretically-sound method based on SIGNSGD to bridge the gap. We present Stochastic-Sign SGD which utilizes novel stochastic-sign based gradient compressors enabling the aforementioned properties in a unified framework. We also present an error-feedback variant of the proposed Stochastic-Sign SGD which further improves the learning performance in FL. We test the proposed method with extensive experiments using deep neural networks on the MNIST dataset and the CIFAR-10 dataset. The experimental results corroborate the effectiveness of the proposed method.
110 - Richeng Jin , Yufan Huang , 2019
Recently, the privacy guarantees of information dissemination protocols have attracted increasing research interests, among which the gossip protocols assume vital importance in various information exchange applications. In this work, we study the pr ivacy guarantees of gossip protocols in general networks in terms of differential privacy and prediction uncertainty. First, lower bounds of the differential privacy guarantees are derived for gossip protocols in general networks in both synchronous and asynchronous settings. The prediction uncertainty of the source node given a uniform prior is also determined. For the private gossip algorithm, the differential privacy and prediction uncertainty guarantees are derived in closed form. Moreover, considering that these two metrics may be restrictive in some scenarios, the relaxed variants are proposed. It is found that source anonymity is closely related to some key network structure parameters in the general network setting. Then, we investigate information spreading in wireless networks with unreliable communications, and quantify the tradeoff between differential privacy guarantees and information spreading efficiency. Finally, considering that the attacker may not be present at the beginning of the information dissemination process, the scenario of delayed monitoring is studied and the corresponding differential privacy guarantees are evaluated.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا