ترغب بنشر مسار تعليمي؟ اضغط هنا

410 - Daniele Trifir`o 2015
Gravitational waves from coalescing binary black holes encode the evolution of their spins prior to merger. In the post-Newtonian regime and on the precession timescale, this evolution has one of three morphologies, with the spins either librating ar ound one of two fixed points (resonances) or circulating freely. In this work we perform full parameter estimation on resonant binaries with fixed masses and spin magnitudes, changing three parameters: a conserved projected effective spin $xi$ and resonant family $DeltaPhi=0,pi$ (which uniquely label the source), the inclination $theta_{JN}$ of the binarys total angular momentum with respect to the line of sight (which determines the strength of precessional effects in the waveform), and the signal amplitude. We demonstrate that resonances can be distinguished for a wide range of binaries, except for highly symmetric configurations where precessional effects are suppressed. Motivated by new insight into double-spin evolution, we introduce new variables to characterize precessing black hole binaries which naturally reflects the timescale separation of the system and therefore better encode the dynamical information carried by gravitational waves.
Binary black holes on quasicircular orbits with spins aligned with their orbital angular momentum have been testbeds for analytic and numerical relativity for decades, not least because symmetry ensures that such configurations are equilibrium soluti ons to the spin-precession equations. In this work, we show that these solutions can be unstable when the spin of the higher-mass black hole is aligned with the orbital angular momentum and the spin of the lower-mass black hole is anti-aligned. Spins in these configurations are unstable to precession to large misalignment when the binary separation $r$ is between the values $r_{rm udpm}= (sqrt{chi_1} pm sqrt{q chi_2})^4 (1-q)^{-2} M$, where $M$ is the total mass, $q equiv m_2/m_1$ is the mass ratio, and $chi_1$ ($chi_2$) is the dimensionless spin of the more (less) massive black hole. This instability exists for a wide range of spin magnitudes and mass ratios and can occur in the strong-field regime near merger. We describe the origin and nature of the instability using recently developed analytical techniques to characterize fully generic spin precession. This instability provides a channel to circumvent astrophysical spin alignment at large binary separations, allowing significant spin precession prior to merger affecting both gravitational-wave and electromagnetic signatures of stellar-mass and supermassive binary black holes.
79 - Brandon Miller 2015
Reliable low-latency gravitational wave parameter estimation is essential to target limited electromagnetic followup facilities toward astrophysically interesting and electromagnetically relevant sources of gravitational waves. In this study, we exam ine the tradeoff between speed and accuracy. Specifically, we estimate the astrophysical relevance of systematic errors in the posterior parameter distributions derived using a fast-but-approximate waveform model, SpinTaylorF2 (STF2), in parameter estimation with lalinference_mcmc. Though efficient, the STF2 approximation to compact binary inspiral employs approximate kinematics (e.g., a single spin) and an approximate waveform (e.g., frequency domain versus time domain). More broadly, using a large astrophysically-motivated population of generic compact binary merger signals, we report on the effectualness and limitations of this single-spin approximation as a method to infer parameters of generic compact binary sources. For most low-mass compact binary sources, we find that the STF2 approximation estimates compact binary parameters with biases comparable to systematic uncertainties in the waveform. We illustrate by example the effect these systematic errors have on posterior probabilities most relevant to low-latency electromagnetic followup: whether the secondary is has a mass consistent with a neutron star; whether the masses, spins, and orbit are consistent with that neutron stars tidal disruption; and whether the binarys angular momentum axis is oriented along the line of sight.
119 - Jim Healy 2013
Previous analytic and numerical calculations suggest that, at each instant, the emission from a precessing black hole binary closely resembles the emission from a nonprecessing analog. In this paper we quantitatively explore the validity and limitati ons of that correspondence, extracting the radiation from a large collection of roughly two hundred generic black hole binary merger simulations both in the simulation frame and in a corotating frame that tracks precession. To a first approximation, the corotating-frame waveforms resemble nonprecessing analogs, based on similarity over a band-limited frequency interval defined using a fiducial detector (here, advanced LIGO) and the sources total mass $M$. By restricting attention to masses $Min 100, 1000 M_odot$, we insure our comparisons are sensitive only to our simulated late-time inspiral, merger, and ringdown signals. In this mass region, every one of our precessing simulations can be fit by some physically similar member of the texttt{IMRPhenomB} phenomenological waveform family to better than 95%; most fit significantly better. The best-fit parameters at low and high mass correspond to natural physical limits: the pre-merger orbit and post-merger perturbed black hole. Our results suggest that physically-motivated synthetic signals can be derived by viewing radiation from suitable nonprecessing binaries in a suitable nonintertial reference frame. While a good first approximation, precessing systems have degrees of freedom (i.e., the transverse spins) which a nonprecessing simulation cannot reproduce. We quantify the extent to which these missing degrees of freedom limit the utility of synthetic precessing signals for detection and parameter estimation.
The next generation of ground-based gravitational wave detectors may detect a few mergers of comparable-mass Msimeq 100-1000 Msun (intermediate-mass, or IMBH) spinning black holes. Black hole spin is known to have a significant impact on the orbit, m erger signal, and post-merger ringdown of any binary with non-negligible spin. In particular, the detection volume for spinning binaries depends significantly on the component black hole spins. We provide a fit to the single-detector and isotropic-network detection volume versus (total) mass and arbitrary spin for equal-mass binaries. Our analysis assumes matched filtering to all significant available waveform power (up to l=6 available for fitting, but only l<= 4 significant) estimated by an array of 64 numerical simulations with component spins as large as S_{1,2}/M^2 <= 0.8. We provide a spin-dependent estimate of our uncertainty, up to S_{1,2}/M^2 <= 1. For the initial (advanced) LIGO detector, our fits are reliable for $Min[100,500]M_odot$ ($Min[100,1600]M_odot$). In the online version of this article, we also provide fits assuming incomplete information, such as the neglect of higher-order harmonics. We briefly discuss how a strong selection bias towards aligned spins influences the interpretation of future gravitational wave detections of IMBH-IMBH mergers.
Empirical birthrate estimates for pulsar binaries depend on the fraction of sky subtended by the pulsar beam: the pulsar beaming fraction. This fraction depends on both the pulsars opening angle and the misalignment angle between its spin and magneti c axes. Previous estimates use the average value for only two pulsars, i.e. PSRs B1913+16 and B1534+12. We explore how birthrate predictions depend on assumptions about opening angle and alignment, using empirically-motivated distributions to define an effective beaming correction factor, f_{b,eff}. For most known pulsars, we expect f_{b,eff} to be less than 6. We also calculate f_{b,eff} for PSRs J0737-3039A and J1141-6545, applying the currently available constraints for their beam geometry. Our median posterior birthrate predictions for tight PSR-NS binaries, wide PSR-NS binaries, and tight PSR-WD binaries are 89/Myr, 0.84/Myr, and 34/Myr, respectively. For pulsars with spin period between 10 ms and 100 ms, we marginalized our posterior birthrate distribution P(R) over a range of plausible beaming correction factors. Our predictions are robust, changing little between several alternative misalignment angle distribution models. [ABRIDGED]
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا