ترغب بنشر مسار تعليمي؟ اضغط هنا

79 - John P. Stott 2013
We obtained Subaru FMOS observations of Halpha emitting galaxies selected from the HiZELS narrow-band survey, to investigate the relationship between stellar mass, metallicity and star-formation rate at z = 0.84 - 1.47, for comparison with the Fundam ental Metallicity Relation seen at low redshift. Our findings demonstrate, for the first time with a homogeneously selected sample, that a relationship exists for typical star-forming galaxies at z = 1 - 1.5 and that it is surprisingly similar to that seen locally. Therefore, star-forming galaxies at z = 1 - 1.5 are no less metal abundant than galaxies of similar mass and star formation rate (SFR) at z = 0.1, contrary to claims from some earlier studies. We conclude that the bulk of the metal enrichment for this star-forming galaxy population takes place in the 4 Gyr before z = 1.5. We fit a new mass-metallicity-SFR plane to our data which is consistent with other high redshift studies. However, there is some evidence that the mass-metallicity component of this high redshift plane is flattened, at all SFR, compared with z = 0.1, suggesting that processes such as star-formation driven winds, thought to remove enriched gas from low mass halos, are yet to have as large an impact at this early epoch. The negative slope of the SFR-metallicity relation from this new plane is consistent with the picture that the elevation in the SFR of typical galaxies at z > 1 is fuelled by the inflow of metal-poor gas and not major merging.
88 - Mark Swinbank 2011
We present three dimensional spectroscopy of eleven E+A galaxies, selected for their strong H-delta absorption but weak (or non-existent) [OII]3727 and H-alpha emission. This selection suggests that a recent burst of star-formation was triggered but subsequently abruptly ended. We probe the spatial and spectral properties of both the young (~1Gyr) and old (few Gyr) stellar populations. Using the H-delta equivalent widths we estimate that the burst masses must have been at least 10% by mass (Mburst~10^10Mo), which is also consistent with the star-formation history inferred from the broad-band SEDs. On average the A-stars cover ~33% of the galaxy image, extending over 2-15kpc^2, indicating that the characteristic E+A signature is a property of the galaxy as a whole and not due to a heterogeneous mixture of populations. In approximately half of the sample, we find that the A-stars, nebular emission, and continuum emission are not co-located, suggesting that the newest stars are forming in a different place than those that formed ~1Gyr ago, and that recent star-formation has occurred in regions distinct from the oldest stellar populations. At least ten of the galaxies (91%) have dynamics that class them as fast rotators with magnitudes and dynamics comparable to local ellipticals and S0s. We also find a correlation between the spatial extent of the A-stars and dynamics such that the fastest rotators tend to have the most compact A-star populations, providing new constraints on models that aim to explain the transformation of later type galaxies into early types. Finally, we show that there are no obvious differences between the line extents and kinematics of E+A galaxies detected in the radio (AGN) compared to non-radio sources, suggesting that AGN feedback does not play a dramatic role in defining their properties, or that its effects are short.
110 - Darren S. Reed 2008
We explore the clustering properties of high redshift dark matter halos, focusing on halos massive enough to host early generations of stars or galaxies at redshift 10 and greater. Halos are extracted from an array of dark matter simulations able to resolve down to the mini-halo mass scale at redshifts as high as 30, thus encompassing the expected full mass range of halos capable of hosting luminous objects and sources of reionization. Halo clustering on large-scales agrees with the Sheth, Mo & Tormen halo bias relation within all our simulations, greatly extending the regime where large-scale clustering is confirmed to be universal at the 10-20% level (which means, for example, that 3sigma halos of cluster mass at z=0 have the same large-scale bias with respect to the mass distribution as 3sigma halos of galaxy mass at z=10). However, on small-scales, the clustering of our massive halos (> ~10^9 Msun/h) at these high redshifts is stronger than expected from comparisons with small-scale halo clustering extrapolated from lower redshifts. This implies non-universality in the scale-dependence of halo clustering, at least for the commonly used parameterizations of the scale-dependence of bias that we consider. We provide a fit for the scale-dependence of bias in our results. This study provides a basis for using extraordinarily high redshift galaxies (redshift ~10) as a probe of cosmology and galaxy formation at its earliest stages. We show also that mass and halo kinematics are strongly affected by finite simulation volumes. This suggests the potential for adverse affects on gas dynamics in hydrodynamic simulations of limited volumes, such as is typical in simulations of the formation of the first stars, though further study is warranted.
A common feature of hierarchical galaxy formation models is the process of inverse morphological transformation: a bulge dominated galaxy accretes a gas disk, dramatically reducing the systems bulge-to-disk mass ratio. During their formation, present day galaxies may execute many such cycles across the Hubble diagram. A good candidate for such a hermaphrodite galaxy is NGC 3108: a dust-lane early-type galaxy which has a large amount of HI gas distributed in a large scale disk. We present narrow band H_alpha and R-band imaging, and compare the results with the HI distribution. The emission is in two components: a nuclear bar and an extended disk component which coincides with the HI distribution. This suggests that a stellar disk is currently being formed out of the HI gas. The spatial distributions of the H_alpha and HI emission and the HII regions are consistent with a barred spiral structure, extending some 20 kpc in radius. We measure an extinction- corrected SFR of 0.42 Msun/yr. The luminosity function of the HII regions is similar to other spiral galaxies, with a power law index of -2.1, suggesting that the star formation mechanism is similar to other spiral galaxies. We measured the current disk mass and find that it is too massive to have been formed by the current SFR over the last few Gyr. It is likely that the SFR in NGC 3108 was higher in the past. With the current SFR, the disk in NGC 3108 will grow to be ~6.2x10^9 Msun in stellar mass within the next 5.5 Gyr. While this is substantial, the disk will be insignificant compared with the large bulge mass: the final stellar mass disk-to-bulge ratio will be ~0.02. NGC 3108 will fail to transform into anything resembling a spiral without a boost in the SFR and additional supply of gas.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا