ترغب بنشر مسار تعليمي؟ اضغط هنا

Abridged: We report the discovery of two, new, rare, wide, double-degenerate binaries that each contain a magnetic and a non-magnetic star. The components of SDSSJ092646.88+132134.5 + J092647.00+132138.4 and SDSSJ150746.48+521002.1 + J150746.80+52095 8.0 have angular separations of only 4.6 arcsec (a~650AU) and 5.1 arcsec (a~750AU), respectively. They also appear to share common proper motions. Follow-up optical spectroscopy reveals each system to consist of a DA and a H-rich high-field magnetic white dwarf (HFMWD). Our measurements of the effective temperatures and the surface gravities of the DA components reveal both to have larger masses than are typical of field white dwarfs. By assuming that these degenerates have evolved essentially as single stars, due to their wide orbital separations, we use them to place limits on the total ages of our stellar systems. These argue that in each case the HFMWD is probably associated with an early type progenitor (M_init > 2M_solar). We find that the cooling time of SDSSJ150746.80+520958.0 (DAH) is somewhat lower than might be expected had it followed the evolutionary path of a typical single star. This mild discord is in the same sense as that observed for two of the small number of other HFMWDs for which progenitor mass estimates have been made, REJ0317-853 and EG59. The mass of the other DAH, SDSSJ092646.88+132134.5, appears to be smaller than expected on the basis of single star evolution. If this object was/is a member of a hierarchical triple system it may have experienced greater mass loss during an earlier phase of its life as a result of it having a close companion. The large uncertainties on our estimates of the parameters of the HFMWDs suggest a larger sample of these objects is required to firmly identify any trends in their inferred cooling times and progenitor masses.
We present the preliminary results of a survey of the open clusters NGC3532 and NGC2287 for new white dwarf members which can help improve understanding of the form of the upper end of the stellar initial mass-final mass relation. We identify four ob jects with cooling times, distances and proper motions consistent with membership of these clusters. We find that despite a range in age of ~100Myr the masses of the four heaviest white dwarfs in NGC3532 span the narrow mass interval M~0.9-1.0Msolar suggesting that the initial mass-final mass relation is relatively flatter over 4.5Msolar <~ M_init <~ 6.5Msolar than at immediately lower masses. Additionally, we have unearthed WD J0646-203 which is possibly the most massive cluster white dwarf identified to date. With M~1.1Msolar it seems likely to be composed of ONe and has a cooling time consistent with it having evolved from a single star.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا