ترغب بنشر مسار تعليمي؟ اضغط هنا

It has been repeatedly observed that convolutional architectures when applied to image understanding tasks learn oriented bandpass filters. A standard explanation of this result is that these filters reflect the structure of the images that they have been exposed to during training: Natural images typically are locally composed of oriented contours at various scales and oriented bandpass filters are matched to such structure. We offer an alternative explanation based not on the structure of images, but rather on the structure of convolutional architectures. In particular, complex exponentials are the eigenfunctions of convolution. These eigenfunctions are defined globally; however, convolutional architectures operate locally. To enforce locality, one can apply a windowing function to the eigenfunctions, which leads to oriented bandpass filters as the natural operators to be learned with convolutional architectures. From a representational point of view, these filters allow for a local systematic way to characterize and operate on an image or other signal. We offer empirical support for the hypothesis that convolutional networks learn such filters at all of their convolutional layers. While previous research has shown evidence of filters having oriented bandpass characteristics at early layers, ours appears to be the first study to document the predominance of such filter characteristics at all layers. Previous studies have missed this observation because they have concentrated on the cumulative compositional effects of filtering across layers, while we examine the filter characteristics that are present at each layer.
This document will review the most prominent proposals using multilayer convolutional architectures. Importantly, the various components of a typical convolutional network will be discussed through a review of different approaches that base their des ign decisions on biological findings and/or sound theoretical bases. In addition, the different attempts at understanding ConvNets via visualizations and empirical studies will be reviewed. The ultimate goal is to shed light on the role of each layer of processing involved in a ConvNet architecture, distill what we currently understand about ConvNets and highlight critical open problems.
As the success of deep models has led to their deployment in all areas of computer vision, it is increasingly important to understand how these representations work and what they are capturing. In this paper, we shed light on deep spatiotemporal repr esentations by visualizing what two-stream models have learned in order to recognize actions in video. We show that local detectors for appearance and motion objects arise to form distributed representations for recognizing human actions. Key observations include the following. First, cross-stream fusion enables the learning of true spatiotemporal features rather than simply separate appearance and motion features. Second, the networks can learn local representations that are highly class specific, but also generic representations that can serve a range of classes. Third, throughout the hierarchy of the network, features become more abstract and show increasing invariance to aspects of the data that are unimportant to desired distinctions (e.g. motion patterns across various speeds). Fourth, visualizations can be used not only to shed light on learned representations, but also to reveal idiosyncracies of training data and to explain failure cases of the system.
This paper presents a novel hierarchical spatiotemporal orientation representation for spacetime image analysis. It is designed to combine the benefits of the multilayer architecture of ConvNets and a more controlled approach to spacetime analysis. A distinguishing aspect of the approach is that unlike most contemporary convolutional networks no learning is involved; rather, all design decisions are specified analytically with theoretical motivations. This approach makes it possible to understand what information is being extracted at each stage and layer of processing as well as to minimize heuristic choices in design. Another key aspect of the network is its recurrent nature, whereby the output of each layer of processing feeds back to the input. To keep the network size manageable across layers, a novel cross-channel feature pooling is proposed. The multilayer architecture that results systematically reveals hierarchical image structure in terms of multiscale, multiorientation properties of visual spacetime. To illustrate its utility, the network has been applied to the task of dynamic texture recognition. Empirical evaluation on multiple standard datasets shows that it sets a new state-of-the-art.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا