ترغب بنشر مسار تعليمي؟ اضغط هنا

We classify condensed matter systems in terms of the spacetime symmetries they spontaneously break. In particular, we characterize condensed matter itself as any state in a Poincare-invariant theory that spontaneously breaks Lorentz boosts while pres erving at large distances some form of spatial translations, time-translations, and possibly spatial rotations. Surprisingly, the simplest, most minimal system achieving this symmetry breaking pattern---the framid---does not seem to be realized in Nature. Instead, Nature usually adopts a more cumbersome strategy: that of introducing internal translational symmetries---and possibly rotational ones---and of spontaneously breaking them along with their space-time counterparts, while preserving unbroken diagonal subgroups. This symmetry breaking pattern describes the infrared dynamics of ordinary solids, fluids, superfluids, and---if they exist---supersolids. A third, extra-ordinary, possibility involves replacing these internal symmetries with other symmetries that do not commute with the Poincare group, for instance the galileon symmetry, supersymmetry or gauge symmetries. Among these options, we pick the systems based on the galileon symmetry, the galileids, for a more detailed study. Despite some similarity, all different patterns produce truly distinct physical systems with different observable properties. For instance, the low-energy $2to 2$ scattering amplitudes for the Goldstone excitations in the cases of framids, solids and galileids scale respectively as $E^2$, $E^4$, and $E^6$. Similarly the energy momentum tensor in the ground state is trivial for framids ($rho +p=0$), normal for solids ($rho+p>0$) and even inhomogenous for galileids.
We use the coset construction of low-energy effective actions to systematically derive Wess-Zumino (WZ) terms for fluid and isotropic solid systems in two, three and four spacetime dimensions. We recover the known WZ term for fluids in two dimensions as well as the very recently found WZ term for fluids in three dimensions. We find two new WZ terms for supersolids that have not previously appeared in the literature. In addition, by relaxing certain assumptions about the symmetry group of fluids we find a number of new WZ terms for fluids with and without charge, in all dimensions. We find no WZ terms for solids and superfluids.
We show that it is not possible to UV-complete certain low-energy effective theories with spontaneously broken space-time symmetries by embedding them into linear sigma models, that is, by adding radial modes and restoring the broken symmetries. When such a UV completion is not possible, one can still raise the cutoff up to arbitrarily higher energies by adding fields that transform non-linearly under the broken symmetries, that is, new Goldstone bosons. However, this (partial) UV completion does not necessarily restore any of the broken symmetries. We illustrate this point by considering a concrete example in which a combination of space-time and internal symmetries is broken down to a diagonal subgroup. Along the way, we clarify a recently proposed interpretation of inverse Higgs constraints as gauge-fixing conditions.
We study the equivalence principle and its violations by quantum effects in scalar-tensor theories that admit a conformal frame in which matter only couples to the spacetime metric. These theories possess Ward identities that guarantee the validity o f the weak equivalence principle to all orders in the matter coupling constants. These Ward identities originate from a broken Weyl symmetry under which the scalar field transforms by a shift, and from the symmetry required to couple a massless spin two particle to matter (diffeomorphism invariance). But the same identities also predict violations of the weak equivalence principle relatively suppressed by at least two powers of the gravitational couplings, and imply that quantum corrections do not preserve the structure of the action of these theories. We illustrate our analysis with a set of specific examples for spin zero and spin half matter fields that show why matter couplings do respect the equivalence principle, and how the couplings to the gravitational scalar lead to the weak equivalence principle violations predicted by the Ward identities.
We apply the effective field theory approach to the coupled metric-inflaton system, in order to investigate the impact of higher dimension operators on the spectrum of scalar and tensor perturbations in the short-wavelength regime. In both cases, eff ective corrections at tree-level become important when the Hubble parameter is of the order of the Planck mass, or when the physical wave number of a cosmological perturbation mode approaches the square of the Planck mass divided by the Hubble constant. Thus, the cut-off length below which conventional cosmological perturbation theory does not apply is likely to be much smaller than the Planck length. This has implications for the observability of trans-Planckian effects in the spectrum of primordial perturbations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا