ترغب بنشر مسار تعليمي؟ اضغط هنا

The Ericksen model for nematic liquid crystals couples a director field with a scalar degree of orientation variable, and allows the formation of various defects with finite energy. We propose a simple but novel finite element approximation of the pr oblem that can be implemented easily within standard finite element packages. Our scheme is projection-free and thus circumvents the use of weakly acute meshes, which are quite restrictive in 3D but are required by recent algorithms for convergence. We prove stability and $Gamma$-convergence properties of the new method in the presence of defects. We also design an effective nested gradient flow algorithm for computing minimizers that controls the violation of the unit-length constraint of the director. We present several simulations in 2D and 3D that document the performance of the proposed scheme and its ability to capture quite intriguing defects.
We propose and analyze a robust BPX preconditioner for the integral fractional Laplacian on bounded Lipschitz domains. For either quasi-uniform grids or graded bisection grids, we show that the condition numbers of the resulting systems remain unifor mly bounded with respect to both the number of levels and the fractional power. The results apply also to the spectral and censored fractional Laplacians.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا