ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the results of an X-ray mass analysis of the early-type galaxy NGC 4636, using Chandra data. We have compared the X-ray mass density profile with that derived from a dynamical analysis of the systems globular clusters (GCs). Given the obse rved interaction between the central active galactic nucleus and the X-ray emitting gas in NGC 4636, we would expect to see a discrepancy in the masses recovered by the two methods. Such a discrepancy exists within the central ~10kpc, which we interpret as the result of non-thermal pressure support or a local inflow. However, over the radial range ~10-30kpc, the mass profiles agree within the 1-sigma errors, indicating that even in this highly disturbed system, agreement can be sought at an acceptable level of significance over intermediate radii, with both methods also indicating the need for a dark matter halo. However, at radii larger than 30kpc, the X-ray mass exceeds the dynamical mass, by a factor of 4-5 at the largest disagreement. A Fully Bayesian Significance Test finds no statistical reason to reject our assumption of velocity isotropy, and an analysis of X-ray mass profiles in different directions from the galaxy centre suggests that local disturbances at large radius are not the cause of the discrepancy. We instead attribute the discrepancy to the paucity of GC kinematics at large radius, coupled with not knowing the overall state of the gas at the radius where we are reaching the group regime (>30kpc), or a combination of the two.
(abridged) We present a statistical analysis of 28 nearby galaxy groups from the Two-Dimensional XMM-Newton Group Survey (2dXGS). We focus on entropy and the role of feedback, dividing the sample into cool core (CC) and non cool core (NCC) systems, t he first time the latter have been studied in detail in the group regime. The coolest groups have steeper entropy profiles than the warmest systems, and NCC groups have higher central entropy and exhibit more scatter than their CC counterparts. We compare the entropy distribution of the gas in each system to the expected theoretical distribution ignoring non-gravitational processes. In all cases, the observed maximum entropy far exceeds that expected theoretically, and simple models for modifications of the theoretical entropy distribution perform poorly. Applying initial pre-heating, followed by radiative cooling, generally fails to match the low entropy behaviour, and only performs well when the difference between the maximum entropy of the observed and theoretical distributions is small. Successful feedback models need to work differentially to increase the entropy range in the gas, and we suggest two basic possibilities. We analyse the effects of feedback on the entropy distribution, finding systems with a high measure of `feedback impact to reach higher entropy than their low feedback counterparts and also to show significantly lower central metallicities. If low entropy, metal-rich gas has been boosted to large entropy in the high feedback systems, it must now reside outside 0.5r_500, to remain undetected. We find similar levels of enrichment in both high and low feedback systems, and argue that the lack of extra metals in the highest feedback systems points to an AGN origin for the bulk of the feedback, probably acting within precursor structures.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا