ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider the analytic properties of Feynman integrals from the perspective of general A-discriminants and A-hypergeometric functions introduced by Gelfand,Kapranov and Zelevinsky (GKZ). This enables us, to give a clear and mathematically rigour de scription of the singular locus, also known as Landau variety, via principal A-determinants. We also comprise a description of the various second type singularities. Moreover, by the Horn-Kapranov-parametrization we give a very efficient way to calculate a parametrization of Landau varieties. We furthermore present a new approach to study the sheet structure of multivalued Feynman integrals by use of coamoebas.
We give a brief introduction to a parametric approach for the derivation of shift relations between Feynman integrals and a result on the number of master integrals. The shift relations are obtained from parametric annihilators of the Lee-Pomeransky polynomial $mathcal{G}$. By identification of Feynman integrals as multi-dimensional Mellin transforms, we show that this approach generates every shift relation. Feynman integrals of a given family form a vector space, whose finite dimension is naturally interpreted as the number of master integrals. This number is an Euler characteristic of the polynomial $mathcal{G}$.
We study shift relations between Feynman integrals via the Mellin transform through parametric annihilation operators. These contain the momentum space IBP relations, which are well-known in the physics literature. Applying a result of Loeser and Sab bah, we conclude that the number of master integrals is computed by the Euler characteristic of the Lee-Pomeransky polynomial. We illustrate techniques to compute this Euler characteristic in various examples and compare it with numbers of master integrals obtained in previous works.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا