ترغب بنشر مسار تعليمي؟ اضغط هنا

We assess the partition function and ionization degree of magnetized hydrogen atoms at thermodynamic equilibrium for a wide range of field intensities, $Bapprox 10^5$-$10^{12}$~G. Evaluations include fitting formulae for an arbitrary number of bindin g energies, the coupling between the internal atomic structure and the center-of-mass motion across the magnetic field, and the formation of the so-called decentered states (bound states with the electron shifted from the Coulomb well). Non-ideal gas effects are treated within the occupational probability method. We also present general mathematical expressions for the bound state correspondence between the limits of zero-field and high-field. This let us evaluate the atomic partition function in a continuous way from the Zeeman perturbative regime to very strong fields. Results are shown for conditions found in atmospheres of magnetic white dwarf stars (MWDs), with temperatures $Tapprox 5000$-$80000$~K and densities $rhoapprox 10^{-12}$-$10^{-3}$~g~cm$^3$. Our evaluations show a marked reduction of the gas ionization due to the magnetic field in the atmospheres of strong MWDs. We also found that decentered states could be present in the atmospheres of currently known hot MWDs, giving a significant contribution to the partition function in the strongest magnetized atmospheres.
379 - Rene D. Rohrmann 2017
Iglesias et al. (2002) showed that the Rayleigh scattering from helium atoms decreases by collective effects in the atmospheres of cool white dwarf stars. Their study is here extended to consider an accurate evaluation of the atomic polarizability an d the density effects involved in the Rayleigh cross section over a wide density-temperature region. The dynamic dipole polarizability of helium atoms in the ground state is determinated with the oscillator-strength distribution approach. The spectral density of oscillator strength considered includes most significant single and doubly excited transitions to discrete and continuum energies. Static and dynamic polarizability results are confronted with experiments and other theoretical evaluations shown a very good agreement. In addition, the refractive index of helium is evaluated with the Lorentz-Lorenz equation and shows a satisfactory agreement with the most recent experiments. The effect of spatial correlation of atoms on the Rayleigh scattering is calculated with Monte Carlo simulations and effective energy potentials that represent the particle interactions, covering fluid densities between 0.005 and a few g/cm$^3$ and temperatures between $1000$ K and $15000$ K. We provide analytical fits from which the Rayleigh cross section of fluid helium can be easily calculated at wavelength $lambda>505.35$ AA. Collision-induced light scattering was estimated to be the dominant scattering process at densities greater than 1-2 g/cm$^3$ depending on the temperature.
We present a set of full evolutionary sequences for white dwarfs with hydrogen-deficient atmospheres. We take into account the evolutionary history of the progenitor stars, all the relevant energy sources involved in the cooling, element diffusion in the very outer layers, and outer boundary conditions provided by new and detailed non-gray white dwarf model atmospheres for pure helium composition. These model atmospheres are based on the most up-to-date physical inputs. Our calculations extend down to very low effective temperatures, of $sim 2,500$~K, provide a homogeneous set of evolutionary cooling tracks that are appropriate for mass and age determinations of old hydrogen-deficient white dwarfs, and represent a clear improvement over previous efforts, which were computed using gray atmospheres.
We use the Percus-Yevick approach in the chemical-potential route to evaluate the equation of state of hard hyperspheres in five dimensions. The evaluation requires the derivation of an analytical expression for the contact value of the pair distribu tion function between particles of the bulk fluid and a solute particle with arbitrary size. The equation of state is compared with those obtained from the conventional virial and compressibility thermodynamic routes and the associated virial coefficients are computed. The pressure calculated from all routes is exact up to third density order, but it deviates with respect to simulation data as density increases, the compressibility and the chemical-potential routes exhibiting smaller deviations than the virial route. Accurate linear interpolations between the compressibility route and either the chemical-potential route or the virial one are constructed.
The coupling-parameter method, whereby an extra particle is progressively coupled to the rest of the particles, is applied to the sticky-hard-sphere fluid to obtain its equation of state in the so-called chemical-potential route ($mu$ route). As a co nsistency test, the results for one-dimensional sticky particles are shown to be exact. Results corresponding to the three-dimensional case (Baxters model) are derived within the Percus-Yevick approximation by using different prescriptions for the dependence of the interaction potential of the extra particle on the coupling parameter. The critical point and the coexistence curve of the gas-liquid phase transition are obtained in the $mu$ route and compared with predictions from other thermodynamics routes and from computer simulations. The results show that the $mu$ route yields a general better description than the virial, energy, compressibility, and zero-separation routes.
The chemical potentials of multicomponent fluids are derived in terms of the pair correlation functions for arbitrary number of components, interaction potentials, and dimensionality. The formally exact result is particularized to hard-sphere mixture s with zero or positive nonadditivity. As a simple application, the chemical potentials of three-dimensional additive hard-sphere mixtures are derived from the Percus-Yevick theory and the associated equation of state is obtained. This Percus-Yevick chemical-route equation of state is shown to be more accurate than the virial equation of state. An interpolation between the chemical-potential and compressibility routes exhibits a better performance than the well-known Boublik-Mansoori-Carnahan-Starling-Leland equation of state.
The development of surveys which will be able to cover a large region of the sky several times per year will allow the massive detection of transient events taking place in timescales of years. In addition, the projected full digitalization of the Ha rvard plate collection will open a new window to identify slow transients taking place in timescales of centuries. In particular, these projects will allow the detection of stars undergoing slow eruptions as those expected during late helium flashes in the post-AGB evolution. In order to identify those transients which correspond with late helium flashes the development of synthetic light curves of those events is mandatory. In this connection we present preliminary results of a project aimed at computing grids of theoretical light curves of born again stars.
We introduce a conditional pair distribution function (CPDF) which characterizes the probability density of finding an object (e.g., a particle in a fluid) to certain distance of other, with each of these two having a nearest neighbor to a fixed but otherwise arbitrary distance. This function describes special four-body configurations, but also contains contributions due to the so-called mutual nearest neighbor (two-body) and shared neighbor (three-body) configurations. The CPDF is introduced to improve a Helmholtz free energy method based on space partitions. We derive exact expressions of the CPDF and various associated quantities for randomly distributed, non-interacting points at Euclidean spaces of one, two and three dimensions. Results may be of interest in many diverse scientific fields, from fluid physics to social and biological sciences.
Structural and thermodynamic properties of multicomponent hard-sphere fluids at odd dimensions have recently been derived in the framework of the rational function approximation (RFA) [Rohrmann and Santos, Phys. Rev. E textbf{83}, 011201 (2011)]. It is demonstrated here that the RFA technique yields the exact solution of the Percus-Yevick (PY) closure to the Ornstein-Zernike (OZ) equation for binary mixtures at arbitrary odd dimensions. The proof relies mainly on the Fourier transforms $hat{c}_{ij}(k)$ of the direct correlation functions defined by the OZ relation. From the analysis of the poles of $hat{c}_{ij}(k)$ we show that the direct correlation functions evaluated by the RFA method vanish outside the hard core, as required by the PY theory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا