ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a general fit-free method for measuring the equation of state (EoS) of a scale-invariant gas. This method, which is inspired from the procedure introduced by Ku et al. [Science 335, 563 (2012)] for the unitary three-dimensional Fermi gas, provides a general formalism which can be readily applied to any quantum gas in a known trapping potential, in the frame of the local density approximation. We implement this method on a weakly-interacting two-dimensional Bose gas in the vicinity of the Berezinskii-Kosterlitz-Thouless transition, and determine its EoS with unprecedented accuracy in the critical region. Our measurements provide an important experimental benchmark for classical field approaches which are believed to accurately describe quantum systems in the weakly interacting but non-perturbative regime.
Two-dimensional (2D) systems play a special role in many-body physics. Because of thermal fluctuations, they cannot undergo a conventional phase transition associated to the breaking of a continuous symmetry. Nevertheless they may exhibit a phase tra nsition to a state with quasi-long range order via the Berezinskii-Kosterlitz-Thouless (BKT) mechanism. A paradigm example is the 2D Bose fluid, such as a liquid helium film, which cannot Bose-condense at non-zero temperature although it becomes superfluid above a critical phase space density. Ultracold atomic gases constitute versatile systems in which the 2D quasi-long range coherence and the microscopic nature of the BKT transition were recently explored. However, a direct observation of superfluidity in terms of frictionless flow is still missing for these systems. Here we probe the superfluidity of a 2D trapped Bose gas with a moving obstacle formed by a micron-sized laser beam. We find a dramatic variation of the response of the fluid, depending on its degree of degeneracy at the obstacle location. In particular we do not observe any significant heating in the central, highly degenerate region if the velocity of the obstacle is below a critical value.
Using emph{in situ} measurements on a quasi two-dimensional, harmonically trapped $^{87}$Rb gas, we infer various equations of state for the equivalent homogeneous fluid. From the dependence of the total atom number and the central density of our clo uds with the chemical potential and temperature, we obtain the equations of state for the pressure and the phase-space density. Then using the approximate scale invariance of this two-dimensional system, we determine the entropy per particle. We measure values as low as $0.06,kB$ in the strongly degenerate regime, which shows that a 2D Bose gas can constitute an efficient coolant for other quantum fluids. We also explain how to disentangle the various contributions (kinetic, potential, interaction) to the energy of the trapped gas using a time-of-flight method, from which we infer the reduction of density fluctuations in a non fully coherent cloud.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا