ترغب بنشر مسار تعليمي؟ اضغط هنا

We use three dimensional hydrodynamical simulations to show that a highly misaligned accretion disk around one component of a binary system can exhibit global Kozai-Lidov cycles, where the inclination and eccentricity of the disk are interchanged per iodically. This has important implications for accreting systems on all scales, for example, the formation of planets and satellites in circumstellar and circumplanetary disks, outbursts in X-ray binary systems and accretion on to supermassive black holes.
Be/X-ray binary systems exhibit both periodic (Type I) X-ray outbursts and giant (Type II) outbursts, whose origin has remained elusive. We suggest that Type II X-ray outbursts occur when a highly misaligned decretion disk around the Be star becomes eccentric, allowing the compact object companion to capture a large amount of material at periastron. Using 3D smoothed particle hydrodynamics simulations we model the long term evolution of a representative Be/X-ray binary system. We find that periodic (Type I) X-ray outbursts occur when the neutron star is close to periastron for all disk inclinations. Type II outbursts occur for large misalignment angles and are associated with eccentricity growth that occurs on a timescale of about 10 orbital periods. Mass capture from the eccentric decretion disk results in an accretion disk around the neutron star whose estimated viscous time is long enough to explain the extended duration of Type II outbursts. Previous studies suggested that the outbursts are caused by a warped disk but our results suggest that this is not sufficient, the disk must be both highly misaligned and eccentric to initiate a Type II accretion event.
Protoplanetary disks are likely to be threaded by a weak net flux of vertical magnetic field that is a remnant of the much larger fluxes present in molecular cloud cores. If this flux is approximately conserved its dynamical importance will increase as mass is accreted, initially by stimulating magnetorotational disk turbulence and subsequently by enabling wind angular momentum loss. We use fits to numerical simulations of ambipolar dominated disk turbulence to construct simplified one dimensional evolution models for weakly magnetized protoplanetary disks. We show that the late onset of significant angular momentum loss in a wind can give rise to two timescale disk evolution in which a long phase of viscous evolution precedes rapid dispersal as the wind becomes dominant. The wide dispersion in disk lifetimes could therefore be due to varying initial levels of net flux. Magnetohydrodynamic (MHD) wind triggered dispersal differs from photoevaporative dispersal in predicting mass loss from small (less that 1 AU) scales, where thermal winds are suppressed. Our specific models are based on a limited set of simulations that remain uncertain, but qualitatively similar evolution appears likely if mass is lost from disks more quickly than flux, and if MHD winds become important as the plasma beta decreases.
In the microquasar V4641 Sgr the spin of the black hole is thought to be misaligned with the binary orbital axis. The accretion disc aligns with the black hole spin by the Lense-Thirring effect near to the black hole and further out becomes aligned w ith the binary orbital axis. The inclination of the radio jets and the Fe$Kalpha$ line profile have both been used to determine the inclination of the inner accretion disc but the measurements are inconsistent. Using a steady state analytical warped disc model for V4641 Sgr we find that the inner disc region is flat and aligned with the black hole up to about $900 R_{rm g}$. Thus if both the radio jet and fluorescent emission originates in the same inner region then the measurements of the inner disc inclination should be the same.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا