ترغب بنشر مسار تعليمي؟ اضغط هنا

Diffuse 511 keV line emission, from the annihilation of cold positrons, has been observed in the direction of the Galactic Centre for more than 30 years. The latest high-resolution maps of this emission produced by the SPI instrument on INTEGRAL sugg est at least one component of the emission is spatially coincident with the distribution of ~70 luminous, low-mass X-ray binaries detected in the soft gamma-ray band. The X-ray band, however, is generally a more sensitive probe of X-ray binary populations. Recent X-ray surveys of the Galactic Centre have discovered a much larger population (>4000) of faint, hard X-ray point sources. We investigate the possibility that the positrons observed in the direction of the Galactic Centre originate in pair-dominated jets generated by this population of fainter accretion-powered X-ray binaries. We also consider briefly whether such sources could account for unexplained diffuse emission associated with the Galactic Centre in the microwave (the WMAP `haze) and at other wavelengths. Finally, we point out several unresolved problems in associating Galactic Centre 511 keV emission with the brightest X-ray binaries.
I describe the IR and X-ray observational campaign we have undertaken for the purpose of determining the nature of the faint discrete X-ray source population discovered by Chandra in the Galactic Center (GC). Data obtained for this project includes a deep Chandra survey of the Galactic Bulge; deep, high resolution IR imaging from VLT/ISAAC, CTIO/ISPI, and the UKIDSS Galactic Plane Survey (GPS); and IR spectroscopy from VLT/ISAAC and IRTF/SpeX. By cross-correlating the GC X-ray imaging from Chandra with our IR surveys, we identify candidate counterparts to the X-ray sources via astrometry. Using a detailed IR extinction map, we are deriving magnitudes and colors for all the candidates. Having thus established a target list, we will use the multi-object IR spectrograph FLAMINGOS-2 on Gemini-South to carry out a spectroscopic survey of the candidate counterparts, to search for emission line signatures which are a hallmark of accreting binaries. By determining the nature of these X-ray sources, this FLAMINGOS-2 Galactic Center Survey will have a dramatic impact on our knowledge of the Galactic accreting binary population.
We present an initial matching of the source positions of the Chandra Nuclear Bulge X-ray sources to the new UKIDSS-GPS near-infrared survey of the Nuclear Bulge. This task is made difficult by the extremely crowded nature of the region, despite this , we find candidate counterparts to ~50% of the X-ray sources. We show that detection in the J-band for a candidate counterpart to an X-ray source preferentially selects those candidate counterparts in the foreground whereas candidate counterparts with only detections in the H and K-bands are more likely to be Nuclear Bulge sources. We discuss the planned follow-up for these candidate counterparts.
I describe the IR and X-ray campaign we have undertaken to determine the nature of the faint discrete X-ray source population discovered by Chandra in the Galactic Center. These results will provide the input to the FLAMINGOS-2 Galactic Center Survey (F2GCS). With FLAMINGOS-2s multi-object IR spectrograph we will obtain 1000s of IR spectra of candidate X-ray source counterparts, allowing us to efficiently identify the nature of these sources, and thus dramatically increase the number of known X-ray binaries and CVs in the Milky Way.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا