ترغب بنشر مسار تعليمي؟ اضغط هنا

The moon-forming impact and the subsequent evolution of the proto-Earth is strongly dependent on the properties of materials at the extreme conditions generated by this violent collision. We examine the high pressure behavior of MgO, one of the domin ant constituents in the earths mantle, using high-precision, plate impact shock compression experiments performed on Sandia National Laboratories Z-Machine and extensive quantum simulations using Density Functional Theory (DFT) and quantum Monte Carlo (QMC). The combined data span from ambient conditions to 1.2 TPa and 42,000 K, showing solid-solid and solid-liquid phase boundaries. Furthermore our results indicate under impact that the solid and liquid phases coexist for more than 100 GPa, pushing complete melting to pressures in excess of 600 GPa. The high pressure required for complete shock melting places a lower bound on the relative velocities required for the moon forming impact.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا