ترغب بنشر مسار تعليمي؟ اضغط هنا

Based on a large number of observations carried out in the last decade it appears that the fraction of stars with protoplanetary disks declines steadily between ~1 Myr and ~10 Myr. We do, however, know that the multiplicity fraction of star-forming r egions can be as high as >50% and that multiples have reduced disk lifetimes on average. As a consequence, the observed roughly exponential disk decay can be fully attributed neither to single nor binary stars and its functional form may need revision. Observational evidence for a non-exponential decay has been provided by Kraus et al. (2012), who statistically correct previous disk frequency measurements for the presence of binaries and find agreement with models that feature a constantly high disk fraction up to ~3 Myr, followed by a rapid ($lesssim$2 Myr) decline. We present results from our high angular resolution observational program to study the fraction of protoplanetary disks of single and binary stars separately. We find that disk evolution timescales of stars bound in close binaries (<100 AU) are significantly reduced compared to wider binaries. The frequencies of accretors among single stars and wide binaries appear indistinguishable, and are found to be lower than predicted from planet forming disk models governed by viscous evolution and photoevaporation.
Several tools have been developed in the past few years for the statistical analysis of the exoplanet search surveys, mostly using a combination of Monte-Carlo simulations or a Bayesian approach.Here we present the Quick-MESS, a grid-based, non-Monte Carlo tool aimed to perform statistical analyses on results from and help with the planning of direct imaging surveys. Quick-MESS uses the (expected) contrast curves for direct imaging surveys to assess for each target the probability that a planet of a given mass and semi-major axis can be detected. By using a grid-based approach Quick-MESS is typically more than an order of magnitude faster than tools based on Monte-Carlo sampling of the planet distribution. In addition, Quick-MESS is extremely flexible, enabling the study of a large range of parameter space for the mass and semi-major axes distributions without the need of re-simulating the planet distribution. In order to show examples of the capabilities of the Quick-MESS, we present the analysis of the Gemini Deep Planet Survey and the predictions for upcoming surveys with extreme-AO instruments.
We report the discovery of a wide (135+/-25 AU), unusually blue L5 companion 2MASS J17114559+4028578 to the nearby M4.5 dwarf G 203-50 as a result of a targeted search for common proper motion pairs in the Sloan Digital Sky Survey and the Two Micron All Sky Survey. Adaptive Optics imaging with Subaru indicates that neither component is a nearly equal mass binary with separation > 0.18, and places limits on the existence of additional faint companions. An examination of TiO and CaH features in the primarys spectrum is consistent with solar metallicity and provides no evidence that G 203-50 is metal poor. We estimate an age for the primary of 1-5 Gyr based on activity. Assuming coevality of the companion, its age, gravity and metallicity can be constrained from properties of the primary, making it a suitable benchmark object for the calibration of evolutionary models and for determining the atmospheric properties of peculiar blue L dwarfs. The low total mass (M_tot=0.21+/-0.03 M_sun), intermediate mass ratio (q=0.45+/-0.14), and wide separation of this system demonstrate that the star formation process is capable of forming wide, weakly bound binary systems with low mass and BD components. Based on the sensitivity of our search we find that no more than 2.2% of early-to-mid M dwarfs (9.0 < M_V < 13.0) have wide substellar companions with m > 0.06 M_sun.
We present a comprehensive study of disks around 81 young low-mass stars and brown dwarfs in the nearby ~2-Myr-old Chamaeleon I star-forming region. We use mid-infrared photometry from the Spitzer Space Telescope, supplemented by findings from ground -based high-resolution optical spectroscopy and adaptive optics imaging. We derive disk fractions of 52 (+/-6) % and 58 (+6/-7) % based on 8-micron and 24-micron colour excesses, respectively, consistent with those reported for other clusters of similar age. Within the uncertainties, the disk frequency in our sample of K3-M8 objects in Cha I does not depend on stellar mass. Diskless and disk-bearing objects have similar spatial distributions. There are no obvious transition disks in our sample, implying a rapid timescale for the inner disk clearing process; however, we find two objects with weak excess at 3-8 microns and substantial excess at 24 microns, which may indicate grain growth and dust settling in the inner disk. For a sub-sample of 35 objects with high-resolution spectra, we investigate the connection between accretion signatures and dusty disks: in the vast majority of cases (29/35) the two are well correlated, suggesting that, on average, the timescale for gas dissipation is similar to that for clearing the inner dust disk. The exceptions are six objects for which dust disks appear to persist even though accretion has ceased or dropped below measurable levels. Adaptive optics images of 65 of our targets reveal that 17 have companions at (projected) separations of 10-80 AU. Of the five <20 AU binaries, four lack infrared excess, possibly indicating that a close companion leads to faster disk dispersal. The closest binary with excess is separated by ~20 AU, which sets an upper limit of ~8 AU for the outer disk radius. (abridged)
We have obtained a series of high-resolution optical spectra for the brown dwarf 2MASSW J1207334-393254 (2M1207) using the ESO Very Large Telescope with the UVES spectrograph during two consecutive observing nights (time resolution of ~12 min) and th e Magellan Clay telescope with the MIKE spectrograph. Combined with previously published results, these data allow us to investigate changes in the emission line spectrum of 2M1207 on timescales of hours to years. Most of the emission line profiles of 2M1207 are broad, in particular that of Halpha, indicating that the dominant fraction of the emission must be attributed to disk accretion rather than to magnetic activity. From the Halpha 10% width we deduce a relatively stable accretion rate between 10^(-10.1...-9.8) Msun/yr for two nights of consecutive observations. Therefore, either the accretion stream is nearly homogeneous over (sub-)stellar longitude or the system is seen face-on. Small but significant variations are evident throughout our near-continuous observation, and they reach a maximum after ~8 h, roughly the timescale on which maximum variability is expected across the rotation cycle. Together with past measurements, we confirm that the accretion rate of 2M1207 varies by more than one order of magnitude on timescales of months to years. Such variable mass accretion yields a plausible explanation for the observed spread in the accretion rate vs. mass diagram. The magnetic field required to drive the funnel flow is on the order of a few hundred G. Despite the obvious presence of a magnetic field, no radio nor X-ray emission has been reported for 2M1207. Possibly strong accretion suppresses magnetic activity in brown dwarfs, similar to the findings for higher mass T Tauri stars.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا