ترغب بنشر مسار تعليمي؟ اضغط هنا

Room temperature angle-dispersive x-ray diffraction measurements on spinel ZnGa2O4 up to 56 GPa show evidence of two structural phase transformations. At 31.2 GPa, ZnGa2O4 undergoes a transition from the cubic spinel structure to a tetragonal spinel structure similar to that of ZnMn2O4. At 55 GPa, a second transition to the orthorhombic marokite structure (CaMn2O4-type) takes place. The equation of state of cubic spinel ZnGa2O4 is determined: V0 = 580.1(9) A3, B0 = 233(8) GPa, B0= 8.3(4), and B0= -0.1145 GPa-1 (implied value); showing that ZnGa2O4 is one of the less compressible spinels studied to date. For the tetragonal structure an equation of state is also determined: V0 = 257.8(9) A3, B0 = 257(11) GPa, B0= 7.5(6), and B0= -0.0764 GPa-1 (implied value). The reported structural sequence coincides with that found in NiMn2O4 and MgMn2O4.
The structural behaviour of CsCdF3 under pressure is investigated by means of theory and experiment. High-pressure powder x-ray diffraction experiments were performed up to a maximum pressure of 60 GPa using synchrotron radiation. The cubic $Pmbar{3} m$ crystal symmetry persists throughout this pressure range. Theoretical calculations were carried out using the full-potential linear muffin-tin orbital method within the local density approximation and the generalized gradient approximation for exchange and correlation effects. The calculated ground state properties -- the equilibrium lattice constant, bulk modulus and elastic constants -- are in good agreement with experimental results. Under ambient conditions, CsCdF3 is an indirect gap insulator with the gap increasing under pressure.
SrMoO4 was studied under compression up to 25 GPa by angle-dispersive x-ray diffraction. A phase transition was observed from the scheelite-structured ambient phase to a monoclinic fergusonite phase at 12.2(9) GPa with cell parameters a = 5.265(9) A, b = 11.191(9) A, c = 5.195 (5) A, and beta = 90.9, Z = 4 at 13.1 GPa. There is no significant volume collapse at the phase transition. No additional phase transitions were observed and on release of pressure the initial phase is recovered, implying that the observed structural modifications are reversible. The reported transition appeared to be a ferroelastic second-order transformation producing a structure that is a monoclinic distortion of the low-pressure phase and was previously observed in compounds isostructural to SrMoO4. A possible mechanism for the transition is proposed and its character is discussed in terms of the present data and the Landau theory. Finally, the EOS is reported and the anisotropic compressibility of the studied crystal is discussed in terms of the compression of the Sr-O and Mo-O bonds.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا