ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper describes TARDIS (Traffic Assignment and Retiming Dynamics with Inherent Stability) which is an algorithmic procedure designed to reallocate traffic within Internet Service Provider (ISP) networks. Recent work has investigated the idea of shifting traffic in time (from peak to off-peak) or in space (by using different links). This work gives a unified scheme for both time and space shifting to reduce costs. Particular attention is given to the commonly used 95th percentile pricing scheme. The work has three main innovations: firstly, introducing the Shapley Gradient, a way of comparing traffic pricing between different links at different times of day; secondly, a unified way of reallocating traffic in time and/or in space; thirdly, a continuous approximation to this system is proved to be stable. A trace-driven investigation using data from two service providers shows that the algorithm can create large savings in transit costs even when only small proportions of the traffic can be shifted.
We present a system for streaming live entertainment content over the Internet originating from a single source to a scalable number of consumers without resorting to centralised or provider- provisioned resources. The system creates a peer-to-peer o verlay network, which attempts to optimise use of existing capacity to ensure quality of service, delivering low start-up delay and lag in playout of the live content. There are three main aspects of our solution. Firstly, a swarming mechanism that constructs an overlay topology for minimising propagation delays from the source to end consumers. Secondly, a distributed overlay anycast system that uses a location-based search algorithm for peers to quickly find the closest peers in a given stream. Finally, a novel incentives mechanism that encourages peers to donate capacity even when the user is not actively consuming content.
Many researchers have hypothesised models which explain the evolution of the topology of a target network. The framework described in this paper gives the likelihood that the target network arose from the hypothesised model. This allows rival hypothe sised models to be compared for their ability to explain the target network. A null model (of random evolution) is proposed as a baseline for comparison. The framework also considers models made from linear combinations of model components. A method is given for the automatic optimisation of component weights. The framework is tested on simulated networks with known parameters and also on real data.
This paper criticises the notion that long-range dependence is an important contributor to the queuing behaviour of real Internet traffic. The idea is questioned in two different ways. Firstly, a class of models used to simulate Internet traffic is s hown to have important theoretical flaws. It is shown that this behaviour is inconsistent with the behaviour of real traffic traces. Secondly, the notion that long-range correlations significantly affects the queuing performance of traffic is investigated by destroying those correlations in real traffic traces (by reordering). It is shown that the longer ranges of correlations are not important except in one case with an extremely high load.
A problem which has recently attracted research attention is that of estimating the distribution of flow sizes in internet traffic. On high traffic links it is sometimes impossible to record every packet. Researchers have approached the problem of es timating flow lengths from sampled packet data in two separate ways. Firstly, different sampling methodologies can be tried to more accurately measure the desired system parameters. One such method is the sample-and-hold method where, if a packet is sampled, all subsequent packets in that flow are sampled. Secondly, statistical methods can be used to ``invert the sampled data and produce an estimate of flow lengths from a sample. In this paper we propose, implement and test two variants on the sample-and-hold method. In addition we show how the sample-and-hold method can be inverted to get an estimation of the genuine distribution of flow sizes. Experiments are carried out on real network traces to compare standard packet sampling with three variants of sample-and-hold. The methods are compared for their ability to reconstruct the genuine distribution of flow sizes in the traffic.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا