ترغب بنشر مسار تعليمي؟ اضغط هنا

We develop the idea that renormalization, decoupling of heavy particle effects from low energy physics and the construction of effective field theories are intimately linked to the momentum space entanglement of disparate modes of an interacting quan tum field theory. Using unitary transformations to decouple these modes at the perturbative level, we show in a scalar field theoretical model with light and heavy fields, how renormalization may be consistently implemented and how the low energy effective field theory can be constructed. We also obtain a renormalization group equation in this framework and apply it to the scalar field theoretical model.
We construct the Faddeev-Kulish asymptotic states in a quantum field theory of electric and magnetic charges. We find that there are two kind of dressings: apart from the well known (electric) Wilson line dressing, there is a magnetic counterpart whi ch can be written as a t Hooft line operator. The t Hooft line dressings are charged under the magnetic large gauge transformation (LGT), but are neutral under electric LGT. This is in contrast to the Faddeev-Kulish dressings of electrons, which can be written as a Wilson line operator and are charged under electric LGT but neutral under magnetic LGT. With these dressings and the corresponding construction of the coherent states, the infrared finiteness of the theory of electric and magnetic charges is guaranteed. Even in the absence of magnetic monopoles, the electric and magnetic soft modes exhibit the electromagnetic duality of vacuum Maxwell theory. Using only the asymptotic form of three-point interactions in a field theory of electric and magnetic charges, we show that the leading magnetic dressings, like the leading electric ones, are exact in the field theory of electric and magnetic charges, in accordance with a conjecture of Strominger. We then extend the construction to perturbative quantum gravity in asymptotically flat spacetime, and construct gravitational t Hooft line dressings that are charged under dual supertranslations. The duality in the quantum theory between the electric and magnetic soft charges and their dressings is thus made manifest.
We demonstrate within the quantum field theoretical framework that an asymptotic particle falling into the black hole implants soft graviton hair on the horizon, conforming with the classical proposal of Hawking, Perry and Strominger. A key ingredien t to this result is the construction of gravitational Wilson line dressings of an infalling scalar field, carrying a definite horizon supertranslation charge. It is shown that a typical Schwarzschild state is degenerate, and can be labeled by different soft supertranslation hairs parametrized for radial trajectories by the mass and energy of the infalling particle and its asymptotic point of contact with the horizon. The supertranslation zero modes are also obtained in terms of zero-frequency graviton operators, and are shown to be the expected canonical partners of the linearized horizon charge that enlarge the horizon Hilbert space.
We construct Faddeev-Kulish states in QED and perturbative quantum gravity to subleading order in the soft momentum expansion and to first order in the coupling constant, using the charge conservation formula of asymptotic symmetries associated with the tree-level subleading soft theorems. We demonstrate that the emission and absorption of soft photons/gravitons in dressed amplitudes vanish. The fact that no additional soft radiation may be added to a dressed amplitude supports the claim that, in the dressed state formalism, the soft and hard sectors of scattering processes are correlated. We also show that the dressed virtual amplitudes are equivalent to the infrared-finite part of the traditional amplitudes constructed using Fock states. Since there is no real soft radiation in the asymptotic Hilbert space, the dressed state formalism gives the same cross sections as the Bloch-Nordsieck method.
We show explicitly that, among the scattering amplitudes constructed from eigenstates of the BMS supertranslation charge, the ones that conserve this charge, are equal to those constructed from Faddeev-Kulish states. Thus, Faddeev-Kulish states natur ally arise as a consequence of the asymptotic symmetries of perturbative gravity and all charge conserving amplitudes are infrared finite. In the process we show an important feature of the Faddeev-Kulish clouds dressing the external hard particles: these clouds can be moved from the incoming states to the outgoing ones, and vice-versa, without changing the infrared finiteness properties of S matrix elements. We also apply our discussion to the problem of the decoherence of momentum configurations of hard particles due to soft boson effects.
Recently it has been shown that infrared divergences in the conventional S-matrix elements of gauge and gravitational theories arise from a violation of the conservation laws associated with large gauge symmetries. These infrared divergences can be c ured by using the Faddeev-Kulish (FK) asymptotic states as the basis for S-matrix elements. Motivated by this connection, we study the action of BMS supertranslations on the FK asymptotic states of perturbative quantum gravity. We compute the BMS charge of the FK states and show that it characterizes the superselection sector to which the state belongs. Conservation of the BMS charge then implies that there is no transition between different superselection sectors, hence showing that the FK graviton clouds implement the necessary vacuum transition induced by the scattering process.
We perform numerical simulations of gravitational collapse in Einstein-aether theory. We find that under certain conditions, the collapse results in the temporary formation of a white hole horizon.
We propose an S matrix approach to the quantum black hole in which causality, unitarity and their interrelation play a prominent role. Assuming the t Hooft S matrix ansatz for a gravitating region surrounded by an asymptotically flat space-time we fi nd a non-local transformation which changes the standard causality requirement but is a symmetry of the unitarity condition of the S matrix. This new S matrix then implies correlations between the in and out states of the theory with the involvement of a third entity which in the case of a quantum black hole, we argue is the horizon S matrix. Such correlations are thus linked to preserving the unitarity of the S matrix and to the fact that entangling unitary operators are nonlocal. The analysis is performed within the Bogoliubov S matrix framework by considering a spacetime consisting of causal complements with a boundary in between. No particular metric or lagrangian dynamics need be invoked even to obtain an evolution equation for the full S matrix. Constraints imposed by the new causality requirement and implications for the effectiveness of field theoretical descriptions and for complementarity are also discussed. We find that the tension between information preservation and complementarity may be resolved provided the full quantum gravity theory either through symmetries or fine tuning forbids the occurrence of closed time like curves of information flow. Then, even if causality is violated near the horizon at any intermediate stage, a standard causal ordering may be preserved for the observer away from the horizon. In the context of the black hole, the novelty of our formulation is that it appears well suited to understand unitarity at any intermediate stage of black hole evaporation. Moreover, it is applicable generally to all theories with long range correlations including the final state projection models.
The infrared behavior of perturbative quantum gravity is studied using the method developed for QED by Faddeev and Kulish. The operator describing the asymptotic dynamics is derived and used to construct an IR-finite S matrix and space of asymptotic states. All-orders cancellation of IR divergences is shown explicitly at the level of matrix elements for the example case of gravitational potential scattering. As a practical application of the formalism, the soft part of a scalar scattering amplitude is related to the gravitational Wilson line and computed to all orders.
We consider the relativistic scattering of unequal-mass scalar particles through graviton exchange in the small-angle high-energy regime. We show the self-consistency of expansion around the eikonal limit and compute the scattering amplitude up to th e next-to-leading power correction of the light particle energy, including gravitational effects of the same order. The first power correction is suppressed by a single power of the ratio of momentum transfer to the energy of the light particle in the rest frame of the heavy particle, independent of the heavy particle mass. We find that only gravitational corrections contribute to the exponentiated phase in impact parameter space in four dimensions. For large enough heavy-particle mass, the saddle point for the impact parameter is modified compared to the leading order by a multiple of the Schwarzschild radius determined by the mass of the heavy particle, independent of the energy of the light particle.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا