ترغب بنشر مسار تعليمي؟ اضغط هنا

Nakanos later modality, inspired by G{o}del-L{o}b provability logic, has been applied in type systems and program logics to capture guarded recursion. Birkedal et al modelled this modality via the internal logic of the topos of trees. We show that th e semantics of the propositional fragment of this logic can be given by linear converse-well-founded intuitionistic Kripke frames, so this logic is a marriage of the intuitionistic modal logic KM and the intermediate logic LC. We therefore call this logic $mathrm{KM}_{mathrm{lin}}$. We give a sound and cut-free complete sequent calculus for $mathrm{KM}_{mathrm{lin}}$ via a strategy that decomposes implication into its static and irreflexive components. Our calculus provides deterministic and terminating backward proof-search, yields decidability of the logic and the coNP-completeness of its validity problem. Our calculus and decision procedure can be restricted to drop linearity and hence capture KM.
We present the guarded lambda-calculus, an extension of the simply typed lambda-calculus with guarded recursive and coinductive types. The use of guarded recursive types ensures the productivity of well-typed programs. Guarded recursive types may be transformed into coinductive types by a type-former inspired by modal logic and Atkey-McBride clock quantification, allowing the typing of acausal functions. We give a call-by-name operational semantics for the calculus, and define adequate denotational semantics in the topos of trees. The adequacy proof entails that the evaluation of a program always terminates. We demonstrate the expressiveness of the calculus by showing the definability of solutions to Ruttens behavioural differential equations. We introduce a program logic with L{o}b induction for reasoning about the contextual equivalence of programs.
Separation logics are a family of extensions of Hoare logic for reasoning about programs that mutate memory. These logics are abstract because they are independent of any particular concrete memory model. Their assertion languages, called proposition al abstract separation logics, extend the logic of (Boolean) Bunched Implications (BBI) in various ways. We develop a modular proof theory for various propositional abstract separation logics using cut-free labelled sequent calculi. We first extend the cut-fee labelled sequent calculus for BBI of Hou et al to handle Calcagno et als original logic of separation algebras by adding sound rules for partial-determinism and cancellativity, while preserving cut-elimination. We prove the completeness of our calculus via a sound intermediate calculus that enables us to construct counter-models from the failure to find a proof. We then capture other propositional abstract separation logics by adding sound rules for indivisible unit and disjointness, while maintaining completeness. We present a theorem prover based on our labelled calculus for these propositional abstract separation logics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا