ترغب بنشر مسار تعليمي؟ اضغط هنا

Highway driving invariably combines high speeds with the need to interact closely with other drivers. Prediction methods enable autonomous vehicles (AVs) to anticipate drivers future trajectories and plan accordingly. Kinematic methods for prediction have traditionally ignored the presence of other drivers, or made predictions only for a limited set of scenarios. Data-driven approaches fill this gap by learning from large datasets to predict trajectories in general scenarios. While they achieve high accuracy, they also lose the interpretability and tools for model validation enjoyed by kinematic methods. This letter proposes a novel kinematic model to describe car-following and lane change behavior, and extends it to predict trajectories in general scenarios. Experiments on highway datasets under varied sensing conditions demonstrate that the proposed method outperforms state-of-the-art methods.
Point cloud analysis is an area of increasing interest due to the development of 3D sensors that are able to rapidly measure the depth of scenes accurately. Unfortunately, applying deep learning techniques to perform point cloud analysis is non-trivi al due to the inability of these methods to generalize to unseen rotations. To address this limitation, one usually has to augment the training data, which can lead to extra computation and require larger model complexity. This paper proposes a new neural network called the Aligned Edge Convolutional Neural Network (AECNN) that learns a feature representation of point clouds relative to Local Reference Frames (LRFs) to ensure invariance to rotation. In particular, features are learned locally and aligned with respect to the LRF of an automatically computed reference point. The proposed approach is evaluated on point cloud classification and part segmentation tasks. This paper illustrates that the proposed technique outperforms a variety of state of the art approaches (even those trained on augmented datasets) in terms of robustness to rotation without requiring any additional data augmentation.
Machine learning models are central to peoples lives and impact society in ways as fundamental as determining how people access information. The gravity of these models imparts a responsibility to model developers to ensure that they are treating use rs in a fair and equitable manner. Before deploying a model into production, it is crucial to examine the extent to which its predictions demonstrate biases. This paper deals with the detection of bias exhibited by a machine learning model through statistical hypothesis testing. We propose a permutation testing methodology that performs a hypothesis test that a model is fair across two groups with respect to any given metric. There are increasingly many notions of fairness that can speak to different aspects of model fairness. Our aim is to provide a flexible framework that empowers practitioners to identify significant biases in any metric they wish to study. We provide a formal testing mechanism as well as extensive experiments to show how this method works in practice.
Observer design typically requires the observability of the underlying system, which may be hard to verify for nonlinear systems, while guaranteeing asymptotic convergence of errors, which may be insufficient in order to satisfy performance condition s in finite time. This paper develops a method to design Luenberger-type observers for nonlinear systems which guarantee the largest possible domain of attraction for the state estimation error regardless of the initialization of the system. The observer design procedure is posed as a two step problem. In the the first step, the error dynamics are abstractly represented as a linear equation on the space of Radon measures. Thereafter, the problem of identifying the largest set of initial errors that can be driven to within the user-specified error target set in finite-time for all possible initial states, and the corresponding observer gains, is formulated as an infinite-dimensional linear program on measures. This optimization problem is solved, using Lasserres relaxations via a sequence of semidefinite programs with vanishing conservatism. By post-processing the solution of step one, the set of gains that maximize the size of tolerable initial errors is identified in step two. To demonstrate the feasibility of the presented approach two examples are presented.
This paper considers the optimal control for hybrid systems whose trajectories transition between distinct subsystems when state-dependent constraints are satisfied. Though this class of systems is useful while modeling a variety of physical systems undergoing contact, the construction of a numerical method for their optimal control has proven challenging due to the combinatorial nature of the state-dependent switching and the potential discontinuities that arise during switches. This paper constructs a convex relaxation-based approach to solve this optimal control problem. Our approach begins by formulating the problem in the space of relaxed controls, which gives rise to a linear program whose solution is proven to compute the globally optimal controller. This conceptual program is solved by constructing a sequence of semidefinite programs whose solutions are proven to converge from below to the true solution of the original optimal control problem. Finally, a method to synthesize the optimal controller is developed. Using an array of examples, the performance of the proposed method is validated on problems with known solutions and also compared to a commercial solver.
To verify the correct operation of systems, engineers need to determine the set of configurations of a dynamical model that are able to safely reach a specified configuration under a control law. Unfortunately, constructing models for systems interac ting in highly dynamic environments is difficult. This paper addresses this challenge by presenting a convex optimization method to efficiently compute the set of configurations of a polynomial hybrid dynamical system that are able to safely reach a user defined target set despite parametric uncertainty in the model. This class of models describes, for example, legged robots moving over uncertain terrains. The presented approach utilizes the notion of occupation measures to describe the evolution of trajectories of a nonlinear hybrid dynamical system with parametric uncertainty as a linear equation over measures whose supports coincide with the trajectories under investigation. This linear equation with user defined support constraints is approximated with vanishing conservatism using a hierarchy of semidefinite programs that are each proven to compute an inner/outer approximation to the set of initial conditions that can reach the user defined target set safely in spite of uncertainty. The efficacy of this method is illustrated on a collection of six representative examples.
In this paper, we present an approach for designing feedback controllers for polynomial systems that maximize the size of the time-limited backwards reachable set (BRS). We rely on the notion of occupation measures to pose the synthesis problem as an infinite dimensional linear program (LP) and provide finite dimensional approximations of this LP in terms of semidefinite programs (SDPs). The solution to each SDP yields a polynomial control policy and an outer approximation of the largest achievable BRS. In contrast to traditional Lyapunov based approaches which are non-convex and require feasible initialization, our approach is convex and does not require any form of initialization. The resulting time-varying controllers and approximated reachable sets are well-suited for use in a trajectory library or feedback motion planning algorithm. We demonstrate the efficacy and scalability of our approach on five nonlinear systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا