ترغب بنشر مسار تعليمي؟ اضغط هنا

It is a fundamental problem in geometry to decide which moduli spaces of polarized algebraic varieties are embedded by their period maps as Zariski open subsets of locally Hermitian symmetric domains. In the present work we prove that the moduli spac e of Calabi-Yau threefolds coming from eight planes in $mathbb{P}^3$ does {em not} have this property. We show furthermore that the monodromy group of a good family is Zariski dense in the corresponding symplectic group. Moreover, we study a natural sublocus which we call hyperelliptic locus, over which the variation of Hodge structures is naturally isomorphic to wedge product of a variation of Hodge structures of weight one. It turns out the hyperelliptic locus does not extend to a Shimura subvariety of type III (Siegel space) within the moduli space. Besides general Hodge theory, representation theory and computational commutative algebra, one of the proofs depends on a new result on the tensor product decomposition of complex polarized variations of Hodge structures.
The purpose of these notes is to provide the details of the Jacobian ring computations carried out in [1], based on the computer algebra system Magma [2].
We prove that the moduli space of Calabi-Yau 3-folds coming from eight planes of $P^3$ in general positions is not modular. In fact we show the stronger statement that the Zariski closure of the monodromy group is actually the whole $Sp(20,R)$. We co nstruct an interesting submoduli, which we call emph{hyperelliptic locus}, over which the weight 3 $Q$-Hodge structure is the third wedge product of the weight 1 $Q$-Hodge structure on the corresponding hyperelliptic curve. The non-extendibility of the hyperelliptic locus inside the moduli space of a genuine Shimura subvariety is proved.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا