ترغب بنشر مسار تعليمي؟ اضغط هنا

Here we report the optimized magneto-transport properties of polycrystalline La0.70Ca0.3-xSrxMnO3 and their composites with Ag. The optimization was carried out by varying the Sr and Ag contents simultaneously to achieve large temperature coefficient of resistance (TCR) as well as low field magneto-resistance (MR) at room temperature. Sharpest paramagnetic (PM)-ferromagnetic (FM) and insulator-metal (IM) transition is observed in the vicinity of the room temperature (TC=300 K=TIM) for the composition La0.70Ca0.20Sr00.10MnO3:Ag0.20. Partial substitution of larger Sr2+ ions at the Ca2+ ions sites controls the magnitude of the FM and IM transition temperatures, while the Ag induces the desired sharpness in these transitions. For the optimized composition, maximum TCR and MR are tuned to room temperature (300 K) with the former being as high as 9% and the later being 20 and 30 percent at 5 and 10 kOe magnetic fields respectively. Such sharp single peak (TCR= 9 percent) at room temperature can be used for the bolometric and infrared detector applications. The achievement of large TCR and low field MR at T~300K in polycrystalline samples is encouraging and we believe that further improvements can be achieved in thin films, which, by virtue of their low conduction noise, are more suitable for device applications.
112 - Rahul Tripathi , V.P.S. Awana , 2008
La0.7Ba0.3MnO3 (LBMO):Agx (x = 0.0, 0.1, 0.2, 0.3, and 0.4) composites are synthesized by solid-state reaction route, the final sintering temperatures are varied from 1300 (LBMO1300Ag) to 1400 0C (LBMO1400Ag), and their physical properties are compar ed as a function of temperature and Ag content. All samples are crystallized in single phase accompanied by some distortion in main structural phase peaks at higher angles with increase in silver content. Though the lattice parameters (a, c) decrease, the b increases slightly with an increase in Ag content. The scanning electron micrographs (SEM) showed better grains morphology in terms of size and diffusion of grain boundaries with an increase in Ag content. In both LBMO1300Ag and LBMO1400Ag series the metal insulator transition (TMI) and accompanied paramagnetic-ferromagnetic transition (TC) temperatures are decreased with increase in Ag content. The sharpness of MI transition, defined by temperature coefficient of resistance (TCR), is improved for Ag added samples. At a particular content of Ag(0.3), the TMI and TC are tuned to 300K and maximum magneto-resistance at 7Tesla applied field (MR7T) of up to 55% is achieved at this temperature, which is more than double to that as observed for pure samples of the both 1300 and 1400 0C series at same temperature. The MR7T is further increased to above 60% for LBMOAg(0.4) samples, but is at 270K. The MR7T is measured at varying temperatures of 5, 100, 200, 300, and 400K in varying fields from +/- 7 Tesla, which exhibits U and V type shapes. Summarily, the addition of Ag in LBMO improves significantly the morphology of the grains and results in better physical properties of the parent manganite system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا