ترغب بنشر مسار تعليمي؟ اضغط هنا

We perform electronic structure and quantum transport studies of dangling bond loops created on H-passivated Si(100) surfaces and connected to carbon nanoribbon leads. We model loops with straight and zigzag topologies as well as with varying lenght with an efficient density-functional based tight-binding electronic structure approach (DFTB) . Varying the length of the loop or the lead coupling position we induce the drastic change in the transmission due to the electron interference. Depending if the constructive or destructive interference within the loop takes place we can noticeably change transport properties by few orders of magnitude. These results propose a way to engineer the closed electronically driven nanocircuits with high transport properties and exploit the interference effects in order to control them.
The electrical conduction properties of G4-DNA are investigated using a hybrid approach, which combines electronic structure calculations, molecular dynamics (MD) simulations, and the formulation of an effective tight-binding model Hamiltonian. Charg e transport is studied by computing transmission functions along the MD trajectories. Though G4-DNA is structurally more stable than double-stranded DNA (dsDNA), our results strongly suggest that the potential improvement of the electrical transport properties in the former is not necessarily related to an increased stability, but rather to the fact that G4 is able to explore in its conformational space a larger number of charge-transfer active conformations. This in turn is a result of the non-negligible interstrand matrix elements, which allow for additional charge transport pathways. The higher structural stability of G4 can however play an important role once the molecules are contacted by electrodes. In this case, G4 may experience weaker structural distortions than dsDNA and thus preserve to a higher degree its conduction properties.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا