ترغب بنشر مسار تعليمي؟ اضغط هنا

In this work we do an interpolation of Scardigli theory of a quantum-like description of the planetary system that reproduces remarkable Titius-Bode-Richardson rule. More precisely, instead of simple, approximate, Bohr-like theory, or, accurate, Schr $ddot{o}$dinger-like theory, considered by Scardigli, we suggest originally a semi-accurate, de Broglie-like description of the planetary system. Especially, we shall propose a de Broglie-like waves in the planetary systems. More precisely, in distinction from Scardigly (which postulated absence of the interference phenomena at planet orbits) we shall prove that, roughly speaking, planets orbits equal a sum of natural numbers of two types, large and small, of the de-Broglie-like waves. It is similar to well-known situation in atomic physics by interpretation of Bohr momentum quantization postulate by de Broglie relation.
In this work we present a simple, approximate method for analysis of the basic dynamical and thermodynamical characteristics of Kerr-Newman black hole. Instead of the complete dynamics of the black hole self-interaction we consider only such stable ( stationary) dynamical situations determined by condition that black hole (outer) horizon circumference holds the integer number of the reduced Compton wave lengths corresponding to mass spectrum of a small quantum system (representing quant of the black hole self-interaction). Then, we show that Kerr-Newman black hole entropy represents simply the quotient of the sum of static part and rotation part of mass of black hole on the one hand and ground mass of small quantum system on the other hand. Also we show that Kerr-Newman black hole temperature represents the negative value of the classical potential energy of gravitational interaction between a part of black hole with reduced mass and small quantum system in the ground mass quantum state. Finally, we suggest a bosonic great canonical distribution of the statistical ensemble of given small quantum systems in the thermodynamical equilibrium with (macroscopic) black hole as thermal reservoir. We suggest that, practically, only ground mass quantum state is significantly degenerate while all other, excited mass quantum states are non-degenerate. Kerr-Newman black hole entropy is practically equivalent to the ground mass quantum state degeneration. Given statistical distribution admits a rough (qualitative) but simple modeling of Hawking radiation of the black hole too.
In this work we show that single horizon black hole behaves as a laser. It is in many aspects conceptually analogous to Corley and Jacobson work on the two horizon black hole laser. We started by proposition that circumference of the black hole horiz on holds the natural (integer) quantum number of corresponding reduced Comptons wave length of some boson systems in great canonical ensemble. For macroscopic black hole ground state is practically totally occupied while other states are practically totally unoccupied which is a typical Bose condensation. Number of the systems in this condensate represents black hole entropy. For microscopic black hole few lowest energy levels are occupied with almost equivalent population (with negative chemical potential) while all other energy states (with positive chemical potential) are practically unoccupied. It implies that here not only spontaneous but also stimulated emission of radiation comparable with spontaneous emission occurs. By Hawking evaporation any macroscopic black hole turns out in a microscopic black hole that yields, in a significant degree, coherent stimulated emission of the radiation. It implies that by total black hole evaporation there is no decoherence, i.e. information loss. Finally, a mass duality characteristic for suggested black hole model corresponding to string T-duality is discussed.
In this work we suggest, without detailed mathematical analysis, a hypothesis on the physical meaning of cosmological constant. It is primarily based on a conceptual analogy with energy characteristics of the crystal lattice structure, i.e. energy zo nes theory in solid state physics. Namely, according to some theories (holographic principle, emergent gravity etc.) it is supposed that empty space, i.e. quantum vacuum holds a structure like to crystal lattice. It implies a possibility of the existence of totally occupied zones consisting of many levels of the negative energies as well as at least one negative energy forbidden zone, i.e. negative energy gap without any (occupied or empty) level of the negative energy. We suppose that given negative energy forbidden zone in the quantum vacuum represents effectively a positive energy zone without quantum particles that corresponds to cosmological constant. Also we suggest some other (less extravagant) model of the cosmological constant. Here cosmological constant is usually considered as the effect of the quantum vacuum fluctuations where problem of the cut-off can be solved quite simply since here integration over unlimited domain of the quasi-momentums must be changed by integration over one, finite Brillouin zone.
In this work, generalizing our previous results, we determine in an original and the simplest way three most important thermodynamical characteristics (Bekenstein-Hawking entropy, Bekenstein quantization of the entropy or (outer) horizon surface area and Hawking temperature) of Kerr-Newman black hole. We start physically by assumption that circumference of Kerr-Newman black hole (outer) horizon holds the natural (integer) number of corresponding reduced Comptons wave length and use mathematically, practically, only simple algebraic equations. (It is conceptually similar to Bohrs quantization postulate in Bohrs atomic model interpreted by de Broglie relation.)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا